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Abstract

The paper reports on new algorithms for solving

partially observable games. Whereas existing al-
gorithms apply AND-OR search to a tree of black-

box belief states, our “incremental” versions treat

uncertainty as a new search dimension, examining
the physical states within a belief state to construct
solution trees incrementally. On a newly created
database of checkmate problems for Kriegspiel (a
partially observable form of chess), incrementaliza-
tion yields speedups of two or more orders of mag-
nitude on hard instances.

This follows from the fact that an opponent, by simply
choosing moves at randgrhas a nonzero probability of du-
plicating any finite behavior of an optimal opponent with ful
observation. Thus, thiegical possibilitythat the solver can
guarantee a win within some bounded depth depends only
upon thesolver'sown information about the true state. This
implies that neither the opponent’s information state @aor r
domized strategies need be considered. We will see shortly
that the theorem doesot apply to certain other strategies,
which win with probability 1but are noguaranteed

Despite these restrictions, the problem is quite general.
Indeed, it is isomorphic to that of finding guaranteed plans
in nondeterministic, partially observable environmer@ar

) particular focus in this paper is dfriegspiel a variant of
1 Introduction chess in which the opponent’s pieces aompletely invisi-
“Classical” games, such as chess and backgammon, are fulle. As the game progresses, partial information is supplied
observable. Partially observable games, despite theatgre Dy a referee who has access to both players’ positions. The
similarity to the real world, have received less attention i players, Whité and Black, both hear every referee announce-
Al. The overall computational task in such games can be diment. There is no universally accepted set of rules; we adopt
vided conceptually into two parts. Firsttate estimatioris  the following:

the process of generating and updating begief state—a e White may propose to the referee any move that would
representation of the possible states of the world, given th  pe a legal chess move on a board containing just White’s
observations to date. Secomapve selectiois the process of pieces; White may also propose any pawn capture.

choosing a move given the belief state. e If the proposed move is illegal on the board containing

Partially observable games are intrinsically more com- 4 \white and Black pieces, the referee announces “Il-
plicated than their fully observable counterparts. At any legal.”2 White may then try another move

given point, the set of logically possible states may be . . )
very large, rendering both state estimation and move selec- ® !f the move is legal, it is made. Announcements are:
tion intractable. Furthermore, move selection must cansid — Ifa piece is captured on squake “Capture onX.”
one’s own information state (gathering information is Relp — If Black is now in check: “Check byD,” where D

ful) and the opponent’s information state (revealing infar
tion is harmful). Finally, game-theoretically optimal ate-
gies argandomizedecause restricting oneself to determinis-

is one or two of the following directions (from the
perspective of Black’s king): Knight, Rank, File,
Long Diagonal, and Short Diagonal.

— If Black has no legal moves: “Checkmate” if Black
is in check and “Stalemate” otherwise.
o Finally: “Black to move.”
L K . (Examples of play are given in Section 4. In addition,
ciding whether gguaranteed wirexists—i.e., a strategy thal e details are available online at our Kriegspiel website
guarantees the optimal payoff within some finite depth, reywww.cs.berkeley.edu/jawolfe/kriegspiel/ )
gardless of the true state, for any play by the opponent. ThiS' e important aspect of Kriegspiel and many other par-
is simpler than the general problem, for two reasons. F|rstﬁa”y observable games and planning domains is the “try-

the state estimate need represent onlyldiggcally possible a2 o -
states, without considering their probabilities. Second, until-feasible” property—a player may attempt any number

have the following:

tic strategies provides additional information to the amgat.
The paper by Koller and Pfeff¢f 997 provides an excellent
introduction to these issues.

In this paper, we focus on a particular subproblem: de

1W.I.0.g., we assume it is White’s turn to move.

2If the move is not legal for White's pieces alone, or if it has
already been rejected on this turn, the referee says “Nonsense.”

Theorem 1 A guaranteed win exists from some initial belief
state iff it exists against an opponent with full observatio



of actions until a legal one is found. Because the order of atselection, and explains how self-play was used to gendrate t

tempts matters, a move choice is actually a plan to try a givefirst database of Kriegspiel checkmate problems with obser-

sequencef potentially legal moves. Hence, the branchingvation histories.

factor per actual moveis the number of such sequences, Section 4 develops the basic AND-OR tree structure for

which can be superexponential in the number of potentiallysolving Kriegspiel-like games, allowing for possiblyeitjal

legal moves. We will see that try-until-feasible domains ad moves. Section 5 defines two baseline algorithms—versions

mit certain simplifications that mitigate this branchingttar.  of depth-first search (DFS) and proof-number search (PNS)—
Kriegspiel is very challenging for humans. Even for ex- for solving such trees, and then presents some basic improve

perts, “announced” checkmates are extremely rare excephents for these algorithms and analyzes their performamce o

for so-calledmaterial wins—such as KQR-vs.-K—when one our checkmate database.

side is reduced to just a king and the other has sufficierg)saf  Section 6 develops a new family mfcrementalsearch al-

material to force a win. Checkmate is usually “accidental”i gorithms that treat uncertainty as a new search dimension in

the sense that one player mates the other without knowing Hddition to depth and breadth, incrementally proving thelie

in advance. states by adding a single constituent “physical state” to-a s
Several research groups have studied the Kriegspiel checkition at each step. This leads to a further speedup of one

mate problem. Fergusof997 exhibited a randomized or more orders of magnitude. Finally, Section 7 shows how

strategy for the KBN-vs.-K endgame that wimsth prob-  state estimation and incremental checkmate search may be

ability 1; the lone Black king can escape checkmate onlyinterleaved.

by guessing White’'s moves correctly infinitely often. Sub-

sequently[1993, he derived a strategy for the KBB-vs.-K 2  State estimation

g‘&%ﬁgﬁégﬁhﬁ?: mg?egrgrea%;{ggzgﬁaThg.ylgc? %t If we are to find a guaranteed win for White, state estimation

work if the opponent can see the board. Additional materialMust identify the (logicalpelief state—the set of alphysical

win strategies, all deterministic, have been develdiidn-  States(configurations for White and Black pieces) that are

cariniet al, 1997; Bolognesi and Ciancarini, 2003; 2004  consistent with White's history of moves and observations. A
As we explain in Section 4, algorithms fondinga check-  Naive algorithm for exact state estimation looks like this:

mate in Kriegspiel involve searching an AND—OR tree whose e The initial belief state is a singleton, because Black’s
nodes correspond to belief states. This idea is common  pieces start the game in their normal positions.

enough in the Al literature on partially observable plan- e For each White move attempt, apply the move to every
ning search (see, for example, Chapters 3 and 1fRa6- physical state and remove those states that are inconsis-
sell and Norvig, 200B. It was proposed for Kriegspiel, tent with the subsequent percept.

and applied to the analogous partially observable variint o o For each Black turn,

Shogi (Japanese chess), by Sakuta and lida; results for sev- = h g Il P ts f
eral search algorithms are summarized in Sakuta’s PhD the- - hor ea% Squeé]cek egal” percepts for

sis [2001]. Bolognesi and Ciancarif2004 add heuristic the u_nol stertvef ahc_ h”,:ﬁve atter?pts, rtehgg_ve any
measures of “progress” to guide the tree search, but canside P yS!I(IZa sla € for which there are rewer thadis-

only positions in which the opponent has a lone king. In all of tinct ilegal moves. .

these papers, the initial belief state is determined eatiyrn - Rfeplace each remaining physical Stl?tel b3|’( the set

The search algorithm developed by Ginsbgt§99 for Oh updateld stzi\tesgor_relzporr:dmg to all Blac mc;]ves
(partially observable) Bridge play works by sampling thie in t afj are ﬁga and yield the given percept when
tial complete deal and then solving each deal as a fully ob- made In that state. . .
servable game. This approach gives a substantial speedup — Remove duplicate states using a transposition table.
over solving the true game tree, but never acts to gather In Kriegspiel, the belief state can grow very large6!”
or hide information (which is essential for domains such asstates or more—so this algorithm is not always practical. We
Kriegspiel). The only previous Kriegspiel-playing agerg w have found, however, that with certain aggressive styles of
know of, developed by Parkest al. [2009, uses this ap- play, the belief state remains no larger than a few thousand
proach. It keeps track of a sample of its true belief statestates throughout the game.
and at each point selects the move that would be best if the The naive algorithm given above can be viewed as a
remainder of the game were played as fully observable chesbreadth-first expansion of a physical-state tree with dranc

Solving Kriegspiel is an instance of nondeterministic par-ing at Black’s moves and pruning by percepts. An alternative
tially observable planning, and could therefore be camigd  method, which we adopt, performs a depth-first search of the
by symbolic techniques such as the ordered binary decisiottee instead. This has the advantage of generating a stream
diagram (OBDD) methods developed by Bertlial. [200]] of consistent current states with only a moderate amount of
or by guantified Boolean formulae (QBF) solvers. Unfortu- effort per state. Furthermore, if the set of states foundaso f
nately, the computational penalty for generating chessasov does not admit a checkmate, then the whole belief state does
by symbolic inference methods appears to be around four orot admit a checkmate and both state estimation and move
ders of magnitude [Selman, personal communication]. selection can be terminated early (see Section 7).

This paper’s contributions are as follows. Section 2 ad- A randomized depth-first search can generate a randomly
dresses the problem of state estimation; for the purposes gklected sample of consistent states that can be used for ap-
this paper, we focus on exact estimation using straightforproximate decision making. We explore approximate state
ward methods. Section 3 describes a simple but completestimation in a subsequent paper; for now, we assume that
Kriegspiel player, combining both state estimation and enov the exact belief state is available to the checkmate algurit



3 AKiriegspiel checkmate database White
to

In order to evaluate checkmate-finding algorithms for| sz
Kriegspiel, we require a database of test positions. Prior 1|}/
to this work, no such database existedOur first data-
base consists of White’s move and percept histories for 100
Kriegspiel games, up to the point where a 3-ply checkmate
might exist for White? 500 of these are actual mate instances
the other 500 areear-missinstances, which “almost” admit 2o L] o) -
a guaranteed checkmate within 3 ply. For each near-miss in- f”fmvkmm
stance, there is a checkmate plan that works in at least half 0
the possible physical states, but not in all of them.
This database was created by analyzing games between
two different Kriegspiel programs. The first program, ptayi
White, performs exact state estimation and makes a complex
static approximation to 2-ply lookahead; it plays well bahc

[@)

. . Qa3
be defeated easily by a skilled huntaithe second program, K )
playing Black, is much weaker: it computes a limited sub- 4Ce__ o)
set of its true belief state and attempts moves that are most,, - - - - - - Capture on a3_ o suerdd .

likely to be captures and checks first. Whenever White’s bet 4,
lief state has 100 Black positions or fewer, we determinegft | Move
belief state describes a mate or near-miss instance. Iheo, t
move and percept history for the game-in-progress is save
Games in which White’s belief state grows above 10,000 por
sitions are excluded. With these two programs, White’s belie
state generally remains fairly small, and about half theeggm
played result in problem instanc@s.

Obviously, the checkmate problems we generate by this . - - caprreonds
method have belief states that never exceed 10,000 physidal,
states throughout the move history and have at most 100 phys#fove
ical states in the final position (the average is 11). Further 7
more, the solution is at most 3-ply, but may include branches
with illegal move attempts in addition to 3 actual moves.

By simply re-analyzing our 3-ply near-miss problems at 5-
ply, we have also constructed a more difficult database of 258 pep
5-ply mate instances and 242 5-ply near-miss instanceé. Bot Limit
databases are available at our website (URL in Section 1). — ) — ) :

As better state estimation, search, and evaluation methods g“rﬁ li(A m'n'm‘zll AND_FhOR prootjtree for a 4);]4 *é?egksplellf-
are developed, it will be possible to construct more difficul ply checkmate problem. The grayed moves in the Black-to-Move

. p . i hi fi White.
problems that better reflect the kinds of positions reached |Sectlon are hidden from White

expert play. Nonetheless, our problems are far from trivial possible physical states, which differ in the locations and
TOI’ example, We will See_that on 97% of the 5-p|y near-missg pes of Black’s pieces (Wh|te will a|WayS know thmeim-
instances, basic depth-first search requires more than 20Qﬁrof remaining Black pieces). The figure depicts a minimal
CPU seconds to determine that no mate exists (within 5 ply)proof tree for the problem instance, with other possible @sov
by White omitted; it describes the following strategy:

4 Guaranteed Kriegspiel checkmates . 1. White attempts move Qa4 from belief state 1. If the
Thanks to Theorem 1, our search problem involves a tree right-most state (1.c) is the true state, White wins.

whose nodes correspond to White’s belief states. Figure 1, Otherwise, Qa4 was illegal and White now attempts
shows a simple example: a miniature (4x4) 3-ply Kriegspiel "~ o Qa3,from belief state 3.

checkmate. In the root belief-state node (1) there are three .
@) (a) If the subsequent percept is “Capture on a3,” Black

1~ .

*The Internet Chess Club has a database of several thousand has two legal moves: Nb2 and Nc3.
Kriegspiel games, but guaranteed wins cannot be identified because i. If Black makes Nb2, the referee announces
the database omits the history of attempted moves. “Capture on b2” and White mates with Qb4.
“In fact, we find deeper mates through the simple expedient of ii. If Black makes Nc3, the referee announces
classifying leaf nodes as wins if Black is checkmated or if White “Knight Check” and White mates with Qc3.
has a known material win, as defined above. (b) Ifthe subsequent percept is “Capture on a3 & Short
SFor ordinary play, we combine this move selection algorithm (Diagonal) Check,” Black has only one legal move:
with an online version of our approximate depth-first state estima- Kc4. White mates with Qb3.

tion algorithm. . .
®To achieve this high efficiency, we add extra illegal move at-"} gegergl, belief-state AND-OR trees consist of threesype

tempts to White's move history as “hints”; without these hints, fewer 0! NOG€S: _ S

games satisfy our belief-state size criteria. e OR-nodes: In Figure 1, OR-nodes appear in\teite



to Movesections (e.g., nodes 1, 3, 7). An OR-node rep

resents a choice between possible moves for White, and function SOLVE-TOP(b) returns true or false

is proven iff at least one of its children is proven. Its inputs: b, a belief-state node

children are AND-nodes, each containing the results of

applying a single move in every possible physical state.

e EXPAND-nodes: EXPAND-nodes appear in tB&ack

to Move sections, representing Black's moves (e.g.,| method soLvE(b an OR-nodejeturns true or false

nodes 5, 9). Since Black’s moves are invisible to White,  while CHILDREN(b) is not emptydo

each EXPAND-node has only a single child, an AND- if SOLVE-TOP(FIRST(CHILDREN(D))) then return ¢rue

node containing the union (eliminating duplicates) of POFCHILDREN(b))

the legal successors of its possible physical states. An Teturn false

EXPAND-no.de Is proven iff its only .Ch”d IS proven. method sOLVE(b an EXPAND-nodeyeturns true or false

e AND-nodes: AND-nodes are the thin nodes that appear = o m SOLVE-TOR(CHILD(b))

at every other level in the tree (e.g., nodes 2, 4, 6). Phys

ical states within AND-nodes are abbreviated as circles, method soLvE(b an AND-nodeyeturns true or false

An AND-node represents the arrival of a percept from|  if TERMINAL(b) then return VALUE (b)

the referee, and can be terminal or non-terminal: while CHILDREN(b) is not emptydo

— Ifevery physical state in an AND-node is a terminal if not SOLVE-TOP(FIRST(CHILDREN()))) then return false
win for White, the node is terminal with valueue. POFCHILDREN(b))
If any physical state is a terminal draw or loss for | €M true
White, the node is terminal with valyalse.
— Otherwise, the AND-node is nonterminal, and has Figure 2: TheDFSalgorithm.

children that form a partition of its nonterminal
physical states (percepts do not change the unde
lying physical states—see, e.g., nodes 7 and 11).

EXPAND(b)
return SOLVE(b)

method EXPAND(b an OR-node)
for each m in MOVES(FIRST(STATES)))) do

Thus, an AND-node is proven iff all of its belief-state- b — anew AND-node WithrERMINAL (b')= false,
tree childrerandits terminal physical states are proven. VALUE (b')= true, DEPTH(')= DEPTH(b),
In Kriegspiel, the referee makes an announcement after CHILDREN(b)= an empty list, and
each move attempt. Thus, Kriegspiel belief-state trees hay STATEY(D')= MAP(SUCCESSOR, m),STATES(b))
AND-nodes at every other level. The intervening nodes-alter for each s in STATEY(b) do

if s is awin for Whitethen removes from STATES(b')
else if s is terminal orDEPTH(b)= 1 then
b« false; break

nate between EXPAND-nodes (Black moves) and sequences
of OR-nodes (White move attempts)Because one turn for

White may involve several move attempts, White's entire turn if b’ # faise then
has a worst-case branching factor equal to the factoriddeof t PUSH(®',CHILDREN(b))
number of possible moves. if STATEY(b') is emptythen

TERMINAL (b') « true; break

5 Searching belief-state AND—-OR trees

This section describes two common algorithms—depth-firskigyre 3: The OR-node instance of teranD method, which con-
search and proof-number search—for searching belief-stat@ructs and evaluates the childrenbof

AND-OR trees. Like other existing algorithms, both solve

a belief-state tree as an ordinary AND-OR tree with black- PNS(proof-number search) is a best-first search algorithm
box belief-state nodes. After introducing the algorithms, for AND-OR trees, and is commonly believed to be superior
evaluate their performance on our 5-ply checkmate databast® DFS. At each sted®NS expands a “most-proving” node,

with and without some basic improvements. which can make the largest contribution to proving or dis-
51 DES and PNS proving the entire tree. A most-proving node is defined as any
' an node that is a member bbthaminimal proof seind amin-

The pseudocode fdFS (depth-first search) is shown in Fig- imal disproof sebf the tree, where a minimal proof/disproof

ure 28 DFS operates using thexPAND method, which  set is a minimal-cardinality set of unexpanded nodes that, i

constructs and evaluates the children of a belief-stat& nodproved/disproved, would be sufficient to prove/disprove th

(as described in Section 4); as an example, Figure 3 showsot. Every tree has at least one most-proving node; if there

EXPAND’'s OR-node instance. To ug¥S, we simply initial-  are multiple most-proving nodes, tRNSalgorithm chooses

ize an OR-node with the root belief state and remaining depthone arbitrarily{Allis, 1994].°

and pass it tsoLVE-TOP. In Figure 1, the numbers beside )

the nodes indicate an order in whibfFS might expand them 5-2 Analysis and Improvements

when searching the tree. Figure 4 shows the solving ability of our search algorithms

- on the 500 problems in our 5-ply database (for readability,
"Thanks to Theorem 1, illegal Black moves are not considered. we show only a subset of the algorithms tested). We will
8The pseudocode we present in this paper was written for sim-—

plicity, and does not include modifications necessary for handling °We alter the initialization oPNSs tree to reflect the fact that

possibly-illegal moves. Our actual implementations are also morevins occur only after White moves, but do not attempt to take the

efficient (for instance, they construct only one child at a time at OR-depth limit[Allis, 1994] or the amount of uncertainfpakuta, 2001

nodes), and thus differ significantly from the pseudocode shown. into account.



PNS (not shown) performs almost identically RINS (which
naturally allocates its efforts efficiently).

Future work may investigate the effects of ordering the
White moves (e.g., information-gathering and likely chagki
moves first) and the legal percepts (e.g., checks and capture
first for Black and last for White).
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Pruning

Because a proof of guaranteed checkmate is a single branch-
ing plan that must succeed in every physical state of a belief

0.25 ] state, we can make the following observation:

Theorem 2 If a belief state does not admit a guaranteed
‘ Ll checkmate, no superset of that belief state admits a guaran-
1 10 100 1000 teed checkmate.

Cumulative Proportion Problems Solved

A straightforward implementation of trexPAND method
(e.g., Figure 3) constructs all elements of a belief state be
fore evaluating any of them. Theorem 2 suggests a more ef-
ficient strategy: evaluate each physical state as soon ss it i
constructed. If a terminal physical state with vafiaése (or
a nonterminal physical state at the depth limit) is foune, th
construction of the belief state can be halted early. In the
best case, this reduces the effective search depth by ogle lev
(since only a single element of each belief state at the depth
limit will be constructed). As shown in Figure 4 (indicated
by E- for “early termination”), this simple idea is the most
effective of the improvements we consider in this section.

Theorem 2 also suggests another pruning, which is specific

. - to try-until-feasible trees. Consider the situation in g¥hi
100 1000 White is in belief stateh, attempts a possibly-legal move,
and is told that the move is illegal. White’s new belief state
b C b. Theorem 2 implies that i does not admit a guaran-
Figure 4: Performance of search algorithms on our 5-ply Kriegspieteed checkmate, then neither déetn other words, when the
checkmate database. Top: mate instances; Bottom: near-miss iiilegal child of an AND-node is disproved, this is sufficieat
stances. Thg-axes show the fraction of problems solvable within a disprove the AND-node’s parent OR-node as well. For ex-
given amount of CPU time (in Lisp, on a 550 MHz machine). The gmple, if node 3 in Figure 1 were disproved, that would show
algorithms are ranked in decreasing order of efficiency. not only that trying Qa4 first fails to ensure checkmate, but

. . . also thatno other White move from node 1 gives checkmate
introduce thédBU, DUB, andIPNS algorithms later, in Sec- _Clearly, this is a useful pruning rule.

tion 6. Performance on our 3-ply database (not shown) is We call this pruninggreedy since when combined with

qualitatively similar, but does not allow for accurate disc , L 9D S

ination between our improved algorithms the legal-first heuristic it allows White’s turns to be solved
Basic DFS is by far the slowest of the algorithms tested, Without backiracking, by adding moves to the plan iff they

primarily because of the factorial branching factor for &hit :,]e:tqntg %hee?grg?_tt?o‘r’]"she; |§39§;- Seg??r?r? 2 rgove Dpllzeg can-

(which subsequent algorithms avoid, to a large extentjgbas Nt IN¢U pettions, a greedy aigor uctGast

PNSis much faster. Notice that the near-miss instances ark>re€dy Legal-first DFS) has a worst-case branching factor

generally more difficult to solve than the mate instances. et White's turn that is only quadratic in the number of pos-

sible moves. However, Figure 4 shows ti@it-DFS only

Heuristic ordering slightly outperformd.-DFS. This is because the pruning only

When searching a belief-state AND—OR tree using a blackapplies when there are moves that lead to checkmate if legal
box algorithm such aBFS, there are two possible opportu- but not if illegal.
nities for heuristic ordering: White moves at OR-nodes, and Perhaps surprisingly, our experiments show th@-BFS
percepts at AND-nodes. In this paper we focus on the unde@lgorithm performs better when it tries tilkegal child first
lying search algorithms; we do not investigate heuristiteor ~ instead (even though the resulting algorithmit actually
ings for the White moves, and test only a simple but effectivegreedy); this algorithm, shown &&X-DFS in Figure 4, out-
ordering for the percepts. performs everPNS The power ofGX-DFS stems from its
At AND-nodes, thelegal children(children in which the  ability to test a subset of its belief state using possiblyal
last move was legal) are generally much cheapebfé8to  moves, and terminate early if it disproves the subset.
explore than thdllegal child, since they have lower remain-  We did not implement aG-PNS’ algorithm, because the
ing depth. This suggests a simple heuristic: investigage thgreedy pruning could forcBNSto choose between the goals
legal children first. As shown in Figure B;DFS (Legal-first  of proving and disproving the root (it always ddzsth simul-
DFS) is considerably faster th&¥S. On the other hand,- taneously. Future work may explore this issue further.

0.75

0.5

0.25

Cumulative Proportion Problems Solved

Time (s)




UDB @ function SOLVE-TOR(b) returns true or false
G 3 6) ~(‘s\9~‘i{)‘11) inputs: b, a belief-state node
2, b TG VL N v g S while STATES(b) is not emptydo
R0 SN N GO U INCREMENTAL-EXPAND(b,PORSTATES))))
Q@000 ©@GOO®O® | prU aD if not sOLVE(b) then return false
DA A atlaa TNl return true
“ /0\ e /O\ da Y @69
- ~ S T method soLVE(b an AND-nodeyeturns true or false
T S T T T COC O Gwam if TERMINAL (b) then return VALUE(b)
edr ilie el ilie return (Vb' € CHILDREN(b)) SOLVE-TOP(}')
T T DUB
GoGED GoGED " S
T Gein Figure 6: TheDBU algorithm (which builds upo®FS).
GO GHI@» struct proofs by “looking inside” the belief state; they-dif

- X - X — _ ferin thatUDB incrementally constructs belief-statedes

Figure 5: Left: a simple belief-state tree for a planning domain withyyhereasDUB incrementally constructbranchesand DBU

nondetermlmstlg transitionsa, b, ande are movesic andd are incrementally constructs entipgoof trees

percepts. Right: for each incremental algorithm, the order in which A h DO BU ds the d t ded bh

it would expand the nonterminal physical states in the tree. . Ateac P.O".“D expanas the deepest unexpanded phys-
ical state within the current proof tre®@UB does the same,

6 Incremental belief-state AND—OR search except limited to aingle belief-state brancht a time. Thus,
As we saw in the previous section, early termination via in-"" a_[()jure _OFlll-tre(_a”\:\_nthbn_o percept branchiby)B andDBU h
terleaved belief-state construction and evaluation cadl le gCt ! d'?hnttlﬁaty' B 'Sf rlntgs. us tlo ?hn |E)npogtahnt Pomt. 1 fe
to large improvements in performance. This section develihre?AND ba ouh_ refers 1o Its only the breadth or a proof,
ops thisincrementalidea into a novel framework for belief- N -branching (percep :’5)' S .

state AND—OR tree search, which treats uncertainty as a new Whereas the algorithms differ significantly with respect to

search dimension in addition to depth and breadth. After inEStablishing disproofs, when exploring a proof tree such as

troducing this framework, we present results and theaaetic th€ right branch of Figure 5, all three algorithms expand the
analysis for our new algo’rithms. samephysical states, just in a different order. SitndieB and

. DUB both put breadth last, they explore the same sequence
6.1 Introduction of belief-state branches, with different orderings for giogl
Ordinary AND-OR trees have two dimensions: depth andstates within each branch. LikewidelJB andDBU explore
breadth. This leads to two “directional” search algorithms the same first physical-state branch.
depth- and breadth-first search, as well as numerous “best- In addition to these directional algorithms, we have imple-
first” algorithms (e.g.PNS). In addition to depth and breadth, mented a best-firdPNS (incrementalPNS) algorithm that
belief-state AND—OR trees have uncertainty over physicabperates on a single physical state at a time. This algorithm
states. By recognizing uncertainty as a new possible dimenises the above tree model, allowing AND-nodes to store
sion for search, we can construct a new class of directionainexpanded physical states. By simply redefining a most-
belief-state AND—OR search algorithms, as well as new bestproving node as physical statehat, if expanded, could con-
first algorithms that balance all three factors efficiently. tribute most to the proof/disproof of the entire tree, theqghr

In this paper, of the possible incremental directional al-number idea naturally generalizes over uncertainty asasell
gorithms, we consider only the three that put depth beforelepth and breadth. Among other things, this alléRNS to
breadth, which we will caluDB, DBU, andDUB. Figure 5  naturally consider the relative ease of proving and dispgv
shows a simple belief-state tree for a domain with nondeterits belief-state nodes based on their sizes, an ability kvhic
ministic transitions, as well as the order that each of thesether researchers have attempted to artificially introdotze
algorithms would expand the physical states in the tree. Tha PNStype algorithm[Sakuta, 200{L
first algorithm, UDB (uncertainty-then-depth-then-breadth), .
is in fact just theE-DFS algorithm discussed in Section 5. 6-2 Implementations
In the figure, the difference betwe&lDB and the other new Our implementation oDBU, shown in Figure 6, uses a new
algorithms should be immediately apparent; wherg@8 INCREMENTAL-EXPAND method that expands a single phys-
expands all physical states at a node before moving to thieal state rather than an entire belief state at a time (its OR
next node, the other algorithms begin by exploring the firsthode instance is shown in Figure 8, for comparison with Fig-
physical-state treén a depth-first manner. Thus, unlike ex- ure 3). WhenDBU’s SOLVE-TOP encounters uncertainty, it
isting algorithms DBU andDUB can construciinimal dis- ~ first constructs a proof for a single state, and then extends
proofsthat consider only a single element of each belief statethe proof to cover additional states one-at-a-time. To eupp

In the tree, the difference betwe®BU and DUB first  such incremental prooff)FS's soLvE instance for AND-
arises when selecting the seventh node for expansion. Afiodes must also be modified to save proved children, rather
ter establishing a proof on a single physical-state braineh ( than popping them; this allonBBU to continually refine a
non-branching path from the root to a leddBU gives prece- single proof tree that works in all physical states examiseed
dence to verifying the proof on the currephysical-state far.
tree, whereasDUB gives precedence to verifying it on the  Our implementation oDUB usestwo sets of recursive
currentbelief-state branch Thus, all three algorithms con- methods. The inner recursion is exactly thatDBU, ex-



function OUTER-TOPR(b) returns true or false
inputs: b, a belief-state node

return (SOLVE-TOP(b) and OUTER(D))

method OUTER(b an OR-nodejeturns true or false
loop do
if OUTER(FIRST(CHILDREN()))) then return true
PORCHILDREN(D))
if not SOLVE(b) then return false

method OUTER(b an EXPAND-node)eturns true or false
return OUTER(CHILD(b))

method OUTER(b an AND-node)eturns true or false
if TERMINAL(b) then return VALUE (b)
loop do
if not OUTER(FIRST(CHILDREN()))) then return false
PORCHILDREN(D)) / = percept branching here/
if CHILDREN(D) is emptythen return true
if not sOLVE(b) then return false

method soLVE(b an AND-nodeyeturns true or false
if TERMINAL (b) then return VALUE (b)
return SOLVE-TOP(FIRST(CHILDREN()))) / * not herex/

Figure 7: TheDUB algorithm (which builds upo®BU)

method INCREMENTAL-EXPAND(b an OR-nodes a state)
if CHILDREN(D) is emptythen [/ * createb’s children*/
for each m in MOVES(s) do
b+ anew AND-node WitlrERMINAL (b')= true,
VALUE (b')= true, DEPTH(b')= DEPTH(b),
CHILDREN(b)= an empty listMOVE(b)= m,
andsTATEYb )= an empty list
PUSH(b',CHILDREN(b))
for eachd’ in CHILDREN(b) do / * integrates’s childrenx/
s’ «+ SUCCESSORs,MOVE(b'))
if s’ is terminalor DEPTH(b)= 1 then
if 5" is not terminalbor s’ is not a win for Whitethen
removeb’ from CHILDREN(b)
elsePUSH(s', STATEY(V')); TERMINAL (b') — false

able when constructing a belief-state node. To avoid thyelar
penalty associated with always-illegal moves, our actual i
plementations oDUB andDBU use the legal-first heuristic
and skip the move in question (saving it for a later attenfpt) i
it is not legal in any states examined so far.

With incremental search, there are also new opportunities
for heuristic orderings that we have not yet investigateat. F
one, the physical states within a belief state can be ordered
(e.g., best for Black first). One might also consider dynamic
move orderings, using physical-state and/or belief-states-
position tables to cache proving moves; this could be espe-
cially effective in combination with iterative deepening.

6.3 Results

In Figure 4, we see that the directional incremental algo-
rithms have significantly higher solving ability than theon-
incremental counterparts. The true depth-first algoritfiras
DUB andL-DBU) perform at a similar level, outpacing
UDB (LE-DFS) by a large margin. Again, greedy pruning
has a small but significant effecGL-DBU has the highest
solving ability of the algorithms tested, solving 499 of 500
5-ply problems within the 2000-second time lirffit.

In the figure, we see thdPNS is by far the most effec-
tive of our algorithms in solving the mate instances, busfal
behind the true depth-first algorithms on the near-miss in-
stances. This discrepancy can be explained by the depth limi
which strongly violates a basic assumptionPNS: that the
expected amount of work to disprove a physical state is con-
stant throughout the tree. Thus, we expect that the discrep-
ancy would disappear after adaptifiRNS to the depth limit,
or when searching without one.

6.4 Analysis

In this section, we conduct a brief analysis of the time and
space complexity of our new algorithms. No directional al-
gorithm is best in general; for specific classes of beliafest
trees, however, clear differences do arise between the algo
rithms. In the following analysis, we focus on disproofs
(since the algorithms generate the same trees for prooid), a
ignore illegal moves and transpositions.

Recall that in any tree with all terminal leaves at the depth
limit, DFS dominatesBFS in the sense that for every fixed

Figure 8: The OR-node instance of theCcREMENTAL-EXPAND  branch ordering, the set of nodes expande®b will be a
method, which constructs and evaluates the childreniotegrating  subset of the set of nodes expande®I®s. We can make an
them into the children of (which are also constructed if necessary). analogous claim comparing the operatiorbddB andUDB:

cept that thesoLvE method for AND-nodes is modified to Theorem 3 In a tree with all false leaves at the depth limit,
test only the first percept encountered (rather than allipossfor any fixed branch ordering, the set of physical states ex-
ble percepts): one might call this modified recursion simplyPanded byDUB will be a subset of the set of physical states
DU. It either returnsfalse, indicating a certain disproof, or ~e€xpanded byJDB.

true, representing a partial proof of a single belief-state-tre |, this class of treedJDB and DUB visit the same set of

branch. The outer recursion, consistinggdTER-TOP and  hgjief.state nodes with the same order of first visit. Howeve
OUTER, uses the inner recursion to construct a partial proofy g qoes depth-first rather than uncertainty-first searches
and then verify this proof on other percepts (deepest-first) ot gach pelief-state-tree branch, allowing it to find fagse
When implementind>UB or DBU in a try-until-feasible  |eayes faster. Theorem 3 nearly holds for our problem data-
domain, a new issue arises: potential White moves that afgase, because shallgiudsc leaves arise only from stalemates

always illegalare useless, but inflate the branching factorgng Black checkmates, which are relatively rare in the posi-
substantially; thus, it is crucial to avoid them during dar  tjons we create.

This is trivial for an uncertainty-first algorithm, sincenalys-

illegal moves can be filtered out during move generation. 1°|ncidentally, unlike any of our other algorithms, when a move
However, an incremental algorithm cannot use this methodn its current plan is disproveL-DBU can salvage the remainder
because in general only a single physical state will be availof the plan.



Using a simple tree model, we can also approximate the
best-case speedup and worst-case memory requirements for Mate =
our new algorithms. Consider a belief-state tree rootedhat a 90 - Near-Miss = g "
OR-node of sizey, with depthd and fixed branching factors
mw, mg, pw, andppg for the White and Black moves and
percepts. In this tree, examine an arbitrary EXPAND-node 2t
ply from the depth limit with size/’, and definai=u’ * mp.
If the belief-state tree has no terminal nodes, then thevaell
ing table shows how many physical states each directional
algorithm must construct to disprove the EXPAND-node (not
including elements of the EXPAND-node itself):

DFS u+ (u/pB) * mw
UDB U+ mw Vi
DUB & DBU 1+mw 10 20 30 40 50 60 70 80 90 100

Since a majority of the tree’s physical states will be lodate Sequential Time (s)
within 2-ply of the depth limit, we can approximate the over-
all performance of our search algorithms by the number of
physical states they construct within its deepest 2-ply- Fu to yield large performance improvements on a database of
thermore, because all four algorithms visit the same set okriegspiel checkmate problems. Future work will enhance
belief-state nodes in trees without terminal nodes, byrgett  our complete Kriegspiel player with belief-state transpos
u' to theaveragebelief-state size of visited EXPAND-nodes taples (as explored by Sakd2001)) and improved methods
2-ply from the depth limit, we can interpret the values in thefor approximate state estimation and nonterminal evainati
above table as approximately proportionaiua times Thus,  as well as evaluate further applications of incrementaéebel
in the best cas&)UB andDBU are faster by roughly a factor state search. In particular, we plan to investigate dynamic
of the average belief-state size in the tree. This is casist move orderings and iterative deepening, further analyee th
with our observed speedup: in our 5-ply database, the aweragombination of incremental search and approximate state es
value ofu (as defined above) is approximately 60. ~ timation, and apply incremental search to existing methods

Under the above tree model, with the additional stipulationfor general play. One might also consider incrementaliza-

that physical states be evenly distributed among perctgts, tion of partially observable planners and of QBF solversanor
worst-case asymptotic memory requirements for efficient im generally.
plementations of the algorithms are as follows:

100

Interleaved Time (s)

Figure 9: Results for interleaved state estimation and search.
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