
Efficient belief-state AND–OR search, with application to Kriegspiel

Stuart Russell and Jason Wolfe
Computer Science Division

University of California, Berkeley, CA 94720
russell@cs.berkeley.edu, jawolfe@berkeley.edu

Content areas: Game-playing, uncertainty

Abstract

The paper reports on new algorithms for solving
partially observable games. Whereas existing al-
gorithms apply AND-OR search to a tree of black-
box belief states, our “incremental” versions treat
uncertainty as a new search dimension, examining
the physical states within a belief state to construct
solution trees incrementally. On a newly created
database of checkmate problems for Kriegspiel (a
partially observable form of chess), incrementaliza-
tion yields speedups of two or more orders of mag-
nitude on hard instances.

1 Introduction
“Classical” games, such as chess and backgammon, are fully
observable. Partially observable games, despite their greater
similarity to the real world, have received less attention in
AI. The overall computational task in such games can be di-
vided conceptually into two parts. First,state estimationis
the process of generating and updating thebelief state—a
representation of the possible states of the world, given the
observations to date. Second,move selectionis the process of
choosing a move given the belief state.

Partially observable games are intrinsically more com-
plicated than their fully observable counterparts. At any
given point, the set of logically possible states may be
very large, rendering both state estimation and move selec-
tion intractable. Furthermore, move selection must consider
one’s own information state (gathering information is help-
ful) and the opponent’s information state (revealing informa-
tion is harmful). Finally, game-theoretically optimal strate-
gies arerandomizedbecause restricting oneself to determinis-
tic strategies provides additional information to the opponent.
The paper by Koller and Pfeffer[1997] provides an excellent
introduction to these issues.

In this paper, we focus on a particular subproblem: de-
ciding whether aguaranteed winexists—i.e., a strategy that
guarantees the optimal payoff within some finite depth, re-
gardless of the true state, for any play by the opponent. This
is simpler than the general problem, for two reasons. First,
the state estimate need represent only thelogically possible
states, without considering their probabilities. Second,we
have the following:

Theorem 1 A guaranteed win exists from some initial belief
state iff it exists against an opponent with full observation.

This follows from the fact that an opponent, by simply
choosing moves at random, has a nonzero probability of du-
plicating any finite behavior of an optimal opponent with full
observation. Thus, thelogical possibilitythat the solver can
guarantee a win within some bounded depth depends only
upon thesolver’sown information about the true state. This
implies that neither the opponent’s information state nor ran-
domized strategies need be considered. We will see shortly
that the theorem doesnot apply to certain other strategies,
which winwith probability 1but are notguaranteed.

Despite these restrictions, the problem is quite general.
Indeed, it is isomorphic to that of finding guaranteed plans
in nondeterministic, partially observable environments.Our
particular focus in this paper is onKriegspiel, a variant of
chess in which the opponent’s pieces arecompletely invisi-
ble. As the game progresses, partial information is supplied
by a referee who has access to both players’ positions. The
players, White1 and Black, both hear every referee announce-
ment. There is no universally accepted set of rules; we adopt
the following:
• White may propose to the referee any move that would

be a legal chess move on a board containing just White’s
pieces; White may also propose any pawn capture.

• If the proposed move is illegal on the board containing
both White and Black pieces, the referee announces “Il-
legal.”2 White may then try another move.

• If the move is legal, it is made. Announcements are:
– If a piece is captured on squareX: “Capture onX.”
– If Black is now in check: “Check byD,” whereD

is one or two of the following directions (from the
perspective of Black’s king): Knight, Rank, File,
Long Diagonal, and Short Diagonal.

– If Black has no legal moves: “Checkmate” if Black
is in check and “Stalemate” otherwise.

• Finally: “Black to move.”
(Examples of play are given in Section 4. In addition,
more details are available online at our Kriegspiel website,
www.cs.berkeley.edu/˜jawolfe/kriegspiel/ .)

One important aspect of Kriegspiel and many other par-
tially observable games and planning domains is the “try-
until-feasible” property—a player may attempt any number

1W.l.o.g., we assume it is White’s turn to move.
2If the move is not legal for White’s pieces alone, or if it has

already been rejected on this turn, the referee says “Nonsense.”

of actions until a legal one is found. Because the order of at-
tempts matters, a move choice is actually a plan to try a given
sequenceof potentially legal moves. Hence, the branching
factor per actual moveis the number of such sequences,
which can be superexponential in the number of potentially
legal moves. We will see that try-until-feasible domains ad-
mit certain simplifications that mitigate this branching factor.

Kriegspiel is very challenging for humans. Even for ex-
perts, “announced” checkmates are extremely rare except
for so-calledmaterial wins—such as KQR-vs.-K—when one
side is reduced to just a king and the other has sufficient (safe)
material to force a win. Checkmate is usually “accidental” in
the sense that one player mates the other without knowing it
in advance.

Several research groups have studied the Kriegspiel check-
mate problem. Ferguson[1992] exhibited a randomized
strategy for the KBN-vs.-K endgame that winswith prob-
ability 1; the lone Black king can escape checkmate only
by guessing White’s moves correctly infinitely often. Sub-
sequently[1995], he derived a strategy for the KBB-vs.-K
endgame that wins with probability1−ǫ for anyǫ > 0. In our
terminology, these mates are notguaranteed, and they do not
work if the opponent can see the board. Additional material-
win strategies, all deterministic, have been developed[Cian-
cariniet al., 1997; Bolognesi and Ciancarini, 2003; 2004].

As we explain in Section 4, algorithms forfindinga check-
mate in Kriegspiel involve searching an AND–OR tree whose
nodes correspond to belief states. This idea is common
enough in the AI literature on partially observable plan-
ning search (see, for example, Chapters 3 and 12 of[Rus-
sell and Norvig, 2003]). It was proposed for Kriegspiel,
and applied to the analogous partially observable variant of
Shogi (Japanese chess), by Sakuta and Iida; results for sev-
eral search algorithms are summarized in Sakuta’s PhD the-
sis [2001]. Bolognesi and Ciancarini[2004] add heuristic
measures of “progress” to guide the tree search, but consider
only positions in which the opponent has a lone king. In all of
these papers, the initial belief state is determined externally.

The search algorithm developed by Ginsberg[1999] for
(partially observable) Bridge play works by sampling the ini-
tial complete deal and then solving each deal as a fully ob-
servable game. This approach gives a substantial speedup
over solving the true game tree, but never acts to gather
or hide information (which is essential for domains such as
Kriegspiel). The only previous Kriegspiel-playing agent we
know of, developed by Parkeret al. [2005], uses this ap-
proach. It keeps track of a sample of its true belief state,
and at each point selects the move that would be best if the
remainder of the game were played as fully observable chess.

Solving Kriegspiel is an instance of nondeterministic par-
tially observable planning, and could therefore be carriedout
by symbolic techniques such as the ordered binary decision
diagram (OBDD) methods developed by Bertoliet al. [2001]
or by quantified Boolean formulae (QBF) solvers. Unfortu-
nately, the computational penalty for generating chess moves
by symbolic inference methods appears to be around four or-
ders of magnitude [Selman, personal communication].

This paper’s contributions are as follows. Section 2 ad-
dresses the problem of state estimation; for the purposes of
this paper, we focus on exact estimation using straightfor-
ward methods. Section 3 describes a simple but complete
Kriegspiel player, combining both state estimation and move

selection, and explains how self-play was used to generate the
first database of Kriegspiel checkmate problems with obser-
vation histories.

Section 4 develops the basic AND–OR tree structure for
solving Kriegspiel-like games, allowing for possibly-illegal
moves. Section 5 defines two baseline algorithms—versions
of depth-first search (DFS) and proof-number search (PNS)—
for solving such trees, and then presents some basic improve-
ments for these algorithms and analyzes their performance on
our checkmate database.

Section 6 develops a new family ofincrementalsearch al-
gorithms that treat uncertainty as a new search dimension in
addition to depth and breadth, incrementally proving belief
states by adding a single constituent “physical state” to a so-
lution at each step. This leads to a further speedup of one
or more orders of magnitude. Finally, Section 7 shows how
state estimation and incremental checkmate search may be
interleaved.

2 State estimation
If we are to find a guaranteed win for White, state estimation
must identify the (logical)belief state—the set of allphysical
states(configurations for White and Black pieces) that are
consistent with White’s history of moves and observations. A
naive algorithm for exact state estimation looks like this:
• The initial belief state is a singleton, because Black’s

pieces start the game in their normal positions.
• For each White move attempt, apply the move to every

physical state and remove those states that are inconsis-
tent with the subsequent percept.

• For each Black turn,
– For each sequence ofk “Illegal” percepts for

the unobserved Black move attempts, remove any
physical state for which there are fewer thank dis-
tinct illegal moves.

– Replace each remaining physical state by the set
of updated states corresponding to all Black moves
that are legal and yield the given percept when
made in that state.

– Remove duplicate states using a transposition table.
In Kriegspiel, the belief state can grow very large—10

10

states or more—so this algorithm is not always practical. We
have found, however, that with certain aggressive styles of
play, the belief state remains no larger than a few thousand
states throughout the game.

The naive algorithm given above can be viewed as a
breadth-first expansion of a physical-state tree with branch-
ing at Black’s moves and pruning by percepts. An alternative
method, which we adopt, performs a depth-first search of the
tree instead. This has the advantage of generating a stream
of consistent current states with only a moderate amount of
effort per state. Furthermore, if the set of states found so far
does not admit a checkmate, then the whole belief state does
not admit a checkmate and both state estimation and move
selection can be terminated early (see Section 7).

A randomized depth-first search can generate a randomly
selected sample of consistent states that can be used for ap-
proximate decision making. We explore approximate state
estimation in a subsequent paper; for now, we assume that
the exact belief state is available to the checkmate algorithm.

3 A Kriegspiel checkmate database
In order to evaluate checkmate-finding algorithms for
Kriegspiel, we require a database of test positions. Prior
to this work, no such database existed.3 Our first data-
base consists of White’s move and percept histories for 1000
Kriegspiel games, up to the point where a 3-ply checkmate
might exist for White.4 500 of these are actual mate instances;
the other 500 arenear-missinstances, which “almost” admit
a guaranteed checkmate within 3 ply. For each near-miss in-
stance, there is a checkmate plan that works in at least half of
the possible physical states, but not in all of them.

This database was created by analyzing games between
two different Kriegspiel programs. The first program, playing
White, performs exact state estimation and makes a complex
static approximation to 2-ply lookahead; it plays well but can
be defeated easily by a skilled human.5 The second program,
playing Black, is much weaker: it computes a limited sub-
set of its true belief state and attempts moves that are most
likely to be captures and checks first. Whenever White’s be-
lief state has 100 Black positions or fewer, we determine if the
belief state describes a mate or near-miss instance. If so, the
move and percept history for the game-in-progress is saved.
Games in which White’s belief state grows above 10,000 po-
sitions are excluded. With these two programs, White’s belief
state generally remains fairly small, and about half the games
played result in problem instances.6

Obviously, the checkmate problems we generate by this
method have belief states that never exceed 10,000 physical
states throughout the move history and have at most 100 phys-
ical states in the final position (the average is 11). Further-
more, the solution is at most 3-ply, but may include branches
with illegal move attempts in addition to 3 actual moves.

By simply re-analyzing our 3-ply near-miss problems at 5-
ply, we have also constructed a more difficult database of 258
5-ply mate instances and 242 5-ply near-miss instances. Both
databases are available at our website (URL in Section 1).

As better state estimation, search, and evaluation methods
are developed, it will be possible to construct more difficult
problems that better reflect the kinds of positions reached in
expert play. Nonetheless, our problems are far from trivial;
for example, we will see that on 97% of the 5-ply near-miss
instances, basic depth-first search requires more than 2000
CPU seconds to determine that no mate exists (within 5 ply).

4 Guaranteed Kriegspiel checkmates
Thanks to Theorem 1, our search problem involves a tree
whose nodes correspond to White’s belief states. Figure 1
shows a simple example: a miniature (4x4) 3-ply Kriegspiel
checkmate. In the root belief-state node (1) there are three

3The Internet Chess Club has a database of several thousand
Kriegspiel games, but guaranteed wins cannot be identified because
the database omits the history of attempted moves.

4In fact, we find deeper mates through the simple expedient of
classifying leaf nodes as wins if Black is checkmated or if White
has a known material win, as defined above.

5For ordinary play, we combine this move selection algorithm
with an online version of our approximate depth-first state estima-
tion algorithm.

6To achieve this high efficiency, we add extra illegal move at-
tempts to White’s move history as “hints”; without these hints, fewer
games satisfy our belief-state size criteria.

...

...

...

Qa4

Qa3 T

Qb3

T

Qb4 Qc3

1

2

3

4

95

6 10

117 8

Illegal Checkmate

Capture on a3

Nc3 Kc4Nb2

Capture on a3 &

Short Check

T T

Knight CheckCapture on b2

Black

to

Move

White

to

Move

White

to

Move

Depth

Limit

Figure 1: A minimal AND–OR proof tree for a 4x4 Kriegspiel 3-
ply checkmate problem. The grayed moves in the Black-to-Move
section are hidden from White.

possible physical states, which differ in the locations and
types of Black’s pieces (White will always know thenum-
berof remaining Black pieces). The figure depicts a minimal
proof tree for the problem instance, with other possible moves
by White omitted; it describes the following strategy:

1. White attempts move Qa4 from belief state 1. If the
right-most state (1.c) is the true state, White wins.

2. Otherwise, Qa4 was illegal and White now attempts
move Qa3 from belief state 3.
(a) If the subsequent percept is “Capture on a3,” Black

has two legal moves: Nb2 and Nc3.
i. If Black makes Nb2, the referee announces

“Capture on b2” and White mates with Qb4.
ii. If Black makes Nc3, the referee announces

“Knight Check” and White mates with Qc3.
(b) If the subsequent percept is “Capture on a3 & Short

(Diagonal) Check,” Black has only one legal move:
Kc4. White mates with Qb3.

In general, belief-state AND–OR trees consist of three types
of nodes:
• OR-nodes: In Figure 1, OR-nodes appear in theWhite

to Movesections (e.g., nodes 1, 3, 7). An OR-node rep-
resents a choice between possible moves for White, and
is proven iff at least one of its children is proven. Its
children are AND-nodes, each containing the results of
applying a single move in every possible physical state.

• EXPAND-nodes: EXPAND-nodes appear in theBlack
to Move sections, representing Black’s moves (e.g.,
nodes 5, 9). Since Black’s moves are invisible to White,
each EXPAND-node has only a single child, an AND-
node containing the union (eliminating duplicates) of
the legal successors of its possible physical states. An
EXPAND-node is proven iff its only child is proven.

• AND-nodes: AND-nodes are the thin nodes that appear
at every other level in the tree (e.g., nodes 2, 4, 6). Phys-
ical states within AND-nodes are abbreviated as circles.
An AND-node represents the arrival of a percept from
the referee, and can be terminal or non-terminal:

– If every physical state in an AND-node is a terminal
win for White, the node is terminal with valuetrue.
If any physical state is a terminal draw or loss for
White, the node is terminal with valuefalse.

– Otherwise, the AND-node is nonterminal, and has
children that form a partition of its nonterminal
physical states (percepts do not change the under-
lying physical states—see, e.g., nodes 7 and 11).

Thus, an AND-node is proven iff all of its belief-state-
tree childrenand its terminal physical states are proven.

In Kriegspiel, the referee makes an announcement after
each move attempt. Thus, Kriegspiel belief-state trees have
AND-nodes at every other level. The intervening nodes alter-
nate between EXPAND-nodes (Black moves) and sequences
of OR-nodes (White move attempts).7 Because one turn for
White may involve several move attempts, White’s entire turn
has a worst-case branching factor equal to the factorial of the
number of possible moves.

5 Searching belief-state AND–OR trees
This section describes two common algorithms—depth-first
search and proof-number search—for searching belief-state
AND–OR trees. Like other existing algorithms, both solve
a belief-state tree as an ordinary AND–OR tree with black-
box belief-state nodes. After introducing the algorithms,we
evaluate their performance on our 5-ply checkmate database,
with and without some basic improvements.

5.1 DFS and PNS
The pseudocode forDFS (depth-first search) is shown in Fig-
ure 2.8 DFS operates using theEXPAND method, which
constructs and evaluates the children of a belief-state node
(as described in Section 4); as an example, Figure 3 shows
EXPAND’s OR-node instance. To useDFS, we simply initial-
ize an OR-node with the root belief state and remaining depth,
and pass it toSOLVE-TOP. In Figure 1, the numbers beside
the nodes indicate an order in whichDFSmight expand them
when searching the tree.

7Thanks to Theorem 1, illegal Black moves are not considered.
8The pseudocode we present in this paper was written for sim-

plicity, and does not include modifications necessary for handling
possibly-illegal moves. Our actual implementations are also more
efficient (for instance, they construct only one child at a time at OR-
nodes), and thus differ significantly from the pseudocode shown.

function SOLVE-TOP(b) returns true or false
inputs: b, a belief-state node

EXPAND(b)
return SOLVE(b)

method SOLVE(b an OR-node)returns true or false
while CHILDREN(b) is not emptydo

if SOLVE-TOP(FIRST(CHILDREN(b))) then return true
POP(CHILDREN(b))

return false

method SOLVE(b an EXPAND-node)returns true or false
return SOLVE-TOP(CHILD(b))

method SOLVE(b an AND-node)returns true or false
if TERMINAL (b) then return VALUE (b)
while CHILDREN(b) is not emptydo

if not SOLVE-TOP(FIRST(CHILDREN(b))) then return false
POP(CHILDREN(b))

return true

Figure 2: TheDFS algorithm.

method EXPAND(b an OR-node)
for eachm in MOVES(FIRST(STATES(b))) do

b′← a new AND-node withTERMINAL (b′)= false,
VALUE (b′)= true, DEPTH(b′)= DEPTH(b),
CHILDREN(b′)= an empty list, and
STATES(b′)= MAP(SUCCESSOR(*,m),STATES(b))

for each s in STATES(b′) do
if s is a win for Whitethen removes from STATES(b′)
else ifs is terminal orDEPTH(b)= 1 then

b′← false; break
if b′ 6= false then

PUSH(b′,CHILDREN(b))
if STATES(b′) is emptythen

TERMINAL (b′)← true; break

Figure 3: The OR-node instance of theEXPAND method, which con-
structs and evaluates the children ofb.

PNS(proof-number search) is a best-first search algorithm
for AND–OR trees, and is commonly believed to be superior
to DFS. At each stepPNS expands a “most-proving” node,
which can make the largest contribution to proving or dis-
proving the entire tree. A most-proving node is defined as any
node that is a member ofbotha minimal proof setand amin-
imal disproof setof the tree, where a minimal proof/disproof
set is a minimal-cardinality set of unexpanded nodes that, if
proved/disproved, would be sufficient to prove/disprove the
root. Every tree has at least one most-proving node; if there
are multiple most-proving nodes, thePNSalgorithm chooses
one arbitrarily[Allis, 1994].9

5.2 Analysis and Improvements
Figure 4 shows the solving ability of our search algorithms
on the 500 problems in our 5-ply database (for readability,
we show only a subset of the algorithms tested). We will

9We alter the initialization ofPNS’s tree to reflect the fact that
wins occur only after White moves, but do not attempt to take the
depth limit[Allis, 1994] or the amount of uncertainty[Sakuta, 2001]
into account.

 0

 0.25

 0.5

 0.75

 1

 1 10 100 1000

C
um

ul
at

iv
e

P
ro

po
rt

io
n

P
ro

bl
em

s
S

ol
ve

d

Time (s)

IPNS
GL-DBU

L-DBU
L-DUB

LE-DFS
E-PNS

GX-DFS
PNS

GL-DFS
L-DFS

DFS

 0

 0.25

 0.5

 0.75

 1

 100 1000

C
um

ul
at

iv
e

P
ro

po
rt

io
n

P
ro

bl
em

s
S

ol
ve

d

Time (s)

GL-DBU
L-DBU
L-DUB

IPNS
E-PNS

LE-DFS
GX-DFS

PNS
GL-DFS

L-DFS
DFS

Figure 4: Performance of search algorithms on our 5-ply Kriegspiel
checkmate database. Top: mate instances; Bottom: near-miss in-
stances. They-axes show the fraction of problems solvable within a
given amount of CPU time (in Lisp, on a 550 MHz machine). The
algorithms are ranked in decreasing order of efficiency.

introduce theDBU, DUB, andIPNS algorithms later, in Sec-
tion 6. Performance on our 3-ply database (not shown) is
qualitatively similar, but does not allow for accurate discrim-
ination between our improved algorithms.

BasicDFS is by far the slowest of the algorithms tested,
primarily because of the factorial branching factor for White
(which subsequent algorithms avoid, to a large extent); basic
PNS is much faster. Notice that the near-miss instances are
generally more difficult to solve than the mate instances.

Heuristic ordering
When searching a belief-state AND–OR tree using a black-
box algorithm such asDFS, there are two possible opportu-
nities for heuristic ordering: White moves at OR-nodes, and
percepts at AND-nodes. In this paper we focus on the under-
lying search algorithms; we do not investigate heuristic order-
ings for the White moves, and test only a simple but effective
ordering for the percepts.

At AND-nodes, thelegal children(children in which the
last move was legal) are generally much cheaper forDFS to
explore than theillegal child, since they have lower remain-
ing depth. This suggests a simple heuristic: investigate the
legal children first. As shown in Figure 4,L-DFS (Legal-first
DFS) is considerably faster thanDFS. On the other hand,L-

PNS(not shown) performs almost identically toPNS(which
naturally allocates its efforts efficiently).

Future work may investigate the effects of ordering the
White moves (e.g., information-gathering and likely checking
moves first) and the legal percepts (e.g., checks and captures
first for Black and last for White).

Pruning
Because a proof of guaranteed checkmate is a single branch-
ing plan that must succeed in every physical state of a belief
state, we can make the following observation:

Theorem 2 If a belief state does not admit a guaranteed
checkmate, no superset of that belief state admits a guaran-
teed checkmate.

A straightforward implementation of theEXPAND method
(e.g., Figure 3) constructs all elements of a belief state be-
fore evaluating any of them. Theorem 2 suggests a more ef-
ficient strategy: evaluate each physical state as soon as it is
constructed. If a terminal physical state with valuefalse (or
a nonterminal physical state at the depth limit) is found, the
construction of the belief state can be halted early. In the
best case, this reduces the effective search depth by one level
(since only a single element of each belief state at the depth
limit will be constructed). As shown in Figure 4 (indicated
by E- for “early termination”), this simple idea is the most
effective of the improvements we consider in this section.

Theorem 2 also suggests another pruning, which is specific
to try-until-feasible trees. Consider the situation in which
White is in belief stateb, attempts a possibly-legal move,
and is told that the move is illegal. White’s new belief state
b′ ⊂ b. Theorem 2 implies that ifb′ does not admit a guaran-
teed checkmate, then neither doesb. In other words, when the
illegal child of an AND-node is disproved, this is sufficientto
disprove the AND-node’s parent OR-node as well. For ex-
ample, if node 3 in Figure 1 were disproved, that would show
not only that trying Qa4 first fails to ensure checkmate, but
also thatno other White move from node 1 gives checkmate.
Clearly, this is a useful pruning rule.

We call this pruninggreedy, since when combined with
the legal-first heuristic it allows White’s turns to be solved
without backtracking, by adding moves to the plan iff they
lead to checkmate when legal. Because a move plan can-
not include repetitions, a greedy algorithm such asGL-DFS
(Greedy Legal-first DFS) has a worst-case branching factor
per White’s turn that is only quadratic in the number of pos-
sible moves. However, Figure 4 shows thatGL-DFS only
slightly outperformsL-DFS. This is because the pruning only
applies when there are moves that lead to checkmate if legal
but not if illegal.

Perhaps surprisingly, our experiments show that aG-DFS
algorithm performs better when it tries theillegal child first
instead (even though the resulting algorithm isnot actually
greedy); this algorithm, shown asGX-DFS in Figure 4, out-
performs evenPNS. The power ofGX-DFS stems from its
ability to test a subset of its belief state using possibly-legal
moves, and terminate early if it disproves the subset.

We did not implement a “G-PNS” algorithm, because the
greedy pruning could forcePNSto choose between the goals
of proving and disproving the root (it always doesboth simul-
taneously). Future work may explore this issue further.

a

e e e e

b

c d c d

UDB

T T T T T T TF

7 1312 1514

43 65 98 1110

21

DUB

3 95 1211

2 64 108

71

DBU

3 105 127

2 64 119

81

Figure 5: Left: a simple belief-state tree for a planning domain with
nondeterministic transitions.a, b, and e are moves;c and d are
percepts. Right: for each incremental algorithm, the order in which
it would expand the nonterminal physical states in the tree.

6 Incremental belief-state AND–OR search
As we saw in the previous section, early termination via in-
terleaved belief-state construction and evaluation can lead
to large improvements in performance. This section devel-
ops thisincrementalidea into a novel framework for belief-
state AND–OR tree search, which treats uncertainty as a new
search dimension in addition to depth and breadth. After in-
troducing this framework, we present results and theoretical
analysis for our new algorithms.

6.1 Introduction
Ordinary AND–OR trees have two dimensions: depth and
breadth. This leads to two “directional” search algorithms,
depth- and breadth-first search, as well as numerous “best-
first” algorithms (e.g.,PNS). In addition to depth and breadth,
belief-state AND–OR trees have uncertainty over physical
states. By recognizing uncertainty as a new possible dimen-
sion for search, we can construct a new class of directional
belief-state AND–OR search algorithms, as well as new best-
first algorithms that balance all three factors efficiently.

In this paper, of the possible incremental directional al-
gorithms, we consider only the three that put depth before
breadth, which we will callUDB, DBU, andDUB. Figure 5
shows a simple belief-state tree for a domain with nondeter-
ministic transitions, as well as the order that each of these
algorithms would expand the physical states in the tree. The
first algorithm,UDB (uncertainty-then-depth-then-breadth),
is in fact just theE-DFS algorithm discussed in Section 5.
In the figure, the difference betweenUDB and the other new
algorithms should be immediately apparent; whereasUDB
expands all physical states at a node before moving to the
next node, the other algorithms begin by exploring the first
physical-state treein a depth-first manner. Thus, unlike ex-
isting algorithms,DBU andDUB can constructminimal dis-
proofsthat consider only a single element of each belief state.

In the tree, the difference betweenDBU and DUB first
arises when selecting the seventh node for expansion. Af-
ter establishing a proof on a single physical-state branch (i.e.,
non-branching path from the root to a leaf),DBU gives prece-
dence to verifying the proof on the currentphysical-state
tree, whereasDUB gives precedence to verifying it on the
currentbelief-state branch. Thus, all three algorithms con-

function SOLVE-TOP(b) returns true or false
inputs: b, a belief-state node

while STATES(b) is not emptydo
INCREMENTAL-EXPAND(b,POP(STATES(b)))
if not SOLVE(b) then return false

return true

method SOLVE(b an AND-node)returns true or false
if TERMINAL (b) then return VALUE (b)
return (∀b′ ∈ CHILDREN(b)) SOLVE-TOP(b′)

Figure 6: TheDBU algorithm (which builds uponDFS).

struct proofs by “looking inside” the belief state; they dif-
fer in thatUDB incrementally constructs belief-statenodes,
whereasDUB incrementally constructsbranchesand DBU
incrementally constructs entireproof trees.

At each point,DBU expands the deepest unexpanded phys-
ical state within the current proof tree.DUB does the same,
except limited to asingle belief-state branchat a time. Thus,
in a pure OR-tree with no percept branching,DUB andDBU
act identically. This brings us to an important point: the
breadth that ourB refers to is only the breadth of a proof,
the AND-branching (percepts).

Whereas the algorithms differ significantly with respect to
establishing disproofs, when exploring a proof tree such as
the right branch of Figure 5, all three algorithms expand the
samephysical states, just in a different order. SinceUDB and
DUB both put breadth last, they explore the same sequence
of belief-state branches, with different orderings for physical
states within each branch. Likewise,DUB andDBU explore
the same first physical-state branch.

In addition to these directional algorithms, we have imple-
mented a best-firstIPNS (incrementalPNS) algorithm that
operates on a single physical state at a time. This algorithm
uses the above tree model, allowing AND-nodes to store
unexpanded physical states. By simply redefining a most-
proving node as aphysical statethat, if expanded, could con-
tribute most to the proof/disproof of the entire tree, the proof-
number idea naturally generalizes over uncertainty as wellas
depth and breadth. Among other things, this allowsIPNS to
naturally consider the relative ease of proving and disproving
its belief-state nodes based on their sizes, an ability which
other researchers have attempted to artificially introduceinto
aPNS-type algorithm[Sakuta, 2001].

6.2 Implementations
Our implementation ofDBU, shown in Figure 6, uses a new
INCREMENTAL-EXPAND method that expands a single phys-
ical state rather than an entire belief state at a time (its OR-
node instance is shown in Figure 8, for comparison with Fig-
ure 3). WhenDBU’s SOLVE-TOP encounters uncertainty, it
first constructs a proof for a single state, and then extends
the proof to cover additional states one-at-a-time. To support
such incremental proofs,DFS’s SOLVE instance for AND-
nodes must also be modified to save proved children, rather
than popping them; this allowsDBU to continually refine a
single proof tree that works in all physical states examinedso
far.

Our implementation ofDUB usestwo sets of recursive
methods. The inner recursion is exactly that ofDBU, ex-

function OUTER-TOP(b) returns true or false
inputs: b, a belief-state node

return (SOLVE-TOP(b) and OUTER(b))

method OUTER(b an OR-node)returns true or false
loop do

if OUTER(FIRST(CHILDREN(b))) then return true
POP(CHILDREN(b))
if not SOLVE(b) then return false

method OUTER(b an EXPAND-node)returns true or false
return OUTER(CHILD(b))

method OUTER(b an AND-node)returns true or false
if TERMINAL (b) then return VALUE (b)
loop do

if not OUTER(FIRST(CHILDREN(b))) then return false
POP(CHILDREN(b)) / * percept branching here* /
if CHILDREN(b) is emptythen return true
if not SOLVE(b) then return false

method SOLVE(b an AND-node)returns true or false
if TERMINAL (b) then return VALUE (b)
return SOLVE-TOP(FIRST(CHILDREN(b))) / * not here* /

Figure 7: TheDUB algorithm (which builds uponDBU)

method INCREMENTAL-EXPAND(b an OR-node,s a state)
if CHILDREN(b) is emptythen / * createb’s children* /

for eachm in MOVES(s) do
b′← a new AND-node withTERMINAL (b′)= true,

VALUE (b′)= true, DEPTH(b′)= DEPTH(b),
CHILDREN(b′)= an empty list,MOVE(b′)= m,
andSTATES(b′)= an empty list

PUSH(b′,CHILDREN(b))
for each b′ in CHILDREN(b) do / * integrates’s children* /

s′← SUCCESSOR(s,MOVE(b′))
if s′ is terminalor DEPTH(b)= 1 then

if s′ is not terminalor s′ is not a win for Whitethen
removeb′ from CHILDREN(b)

elsePUSH(s′,STATES(b′)); TERMINAL (b′)← false

Figure 8: The OR-node instance of theINCREMENTAL-EXPAND
method, which constructs and evaluates the children ofs, integrating
them into the children ofb (which are also constructed if necessary).

cept that theSOLVE method for AND-nodes is modified to
test only the first percept encountered (rather than all possi-
ble percepts); one might call this modified recursion simply
DU. It either returnsfalse, indicating a certain disproof, or
true, representing a partial proof of a single belief-state-tree
branch. The outer recursion, consisting ofOUTER-TOP and
OUTER, uses the inner recursion to construct a partial proof
and then verify this proof on other percepts (deepest-first).

When implementingDUB or DBU in a try-until-feasible
domain, a new issue arises: potential White moves that are
always illegal are useless, but inflate the branching factor
substantially; thus, it is crucial to avoid them during search.
This is trivial for an uncertainty-first algorithm, since always-
illegal moves can be filtered out during move generation.
However, an incremental algorithm cannot use this method,
because in general only a single physical state will be avail-

able when constructing a belief-state node. To avoid the large
penalty associated with always-illegal moves, our actual im-
plementations ofDUB andDBU use the legal-first heuristic
and skip the move in question (saving it for a later attempt) if
it is not legal in any states examined so far.

With incremental search, there are also new opportunities
for heuristic orderings that we have not yet investigated. For
one, the physical states within a belief state can be ordered
(e.g., best for Black first). One might also consider dynamic
move orderings, using physical-state and/or belief-statetrans-
position tables to cache proving moves; this could be espe-
cially effective in combination with iterative deepening.

6.3 Results
In Figure 4, we see that the directional incremental algo-
rithms have significantly higher solving ability than theirnon-
incremental counterparts. The true depth-first algorithms(L-
DUB andL-DBU) perform at a similar level, outpacingL-
UDB (LE-DFS) by a large margin. Again, greedy pruning
has a small but significant effect:GL-DBU has the highest
solving ability of the algorithms tested, solving 499 of 500
5-ply problems within the 2000-second time limit.10

In the figure, we see thatIPNS is by far the most effec-
tive of our algorithms in solving the mate instances, but falls
behind the true depth-first algorithms on the near-miss in-
stances. This discrepancy can be explained by the depth limit,
which strongly violates a basic assumption ofIPNS: that the
expected amount of work to disprove a physical state is con-
stant throughout the tree. Thus, we expect that the discrep-
ancy would disappear after adaptingIPNS to the depth limit,
or when searching without one.

6.4 Analysis
In this section, we conduct a brief analysis of the time and
space complexity of our new algorithms. No directional al-
gorithm is best in general; for specific classes of belief-state
trees, however, clear differences do arise between the algo-
rithms. In the following analysis, we focus on disproofs
(since the algorithms generate the same trees for proofs), and
ignore illegal moves and transpositions.

Recall that in any tree with all terminal leaves at the depth
limit, DFS dominatesBFS in the sense that for every fixed
branch ordering, the set of nodes expanded byDFS will be a
subset of the set of nodes expanded byBFS. We can make an
analogous claim comparing the operation ofDUB andUDB:

Theorem 3 In a tree with allfalse leaves at the depth limit,
for any fixed branch ordering, the set of physical states ex-
panded byDUB will be a subset of the set of physical states
expanded byUDB.

In this class of trees,UDB andDUB visit the same set of
belief-state nodes with the same order of first visit. However,
DUB does depth-first rather than uncertainty-first searches
of each belief-state-tree branch, allowing it to find thefalse
leaves faster. Theorem 3 nearly holds for our problem data-
base, because shallowfalse leaves arise only from stalemates
and Black checkmates, which are relatively rare in the posi-
tions we create.

10Incidentally, unlike any of our other algorithms, when a move
in its current plan is disproved,GL-DBU can salvage the remainder
of the plan.

Using a simple tree model, we can also approximate the
best-case speedup and worst-case memory requirements for
our new algorithms. Consider a belief-state tree rooted at an
OR-node of sizeu0, with depthd and fixed branching factors
mW , mB , pW , andpB for the White and Black moves and
percepts. In this tree, examine an arbitrary EXPAND-node 2-
ply from the depth limit with sizeu′, and defineu=u′

∗ mB .
If the belief-state tree has no terminal nodes, then the follow-
ing table shows how many physical states each directional
algorithm must construct to disprove the EXPAND-node (not
including elements of the EXPAND-node itself):

DFS u + (u/pB) ∗mW

UDB u + mW

DUB & DBU 1 + mW

Since a majority of the tree’s physical states will be located
within 2-ply of the depth limit, we can approximate the over-
all performance of our search algorithms by the number of
physical states they construct within its deepest 2-ply. Fur-
thermore, because all four algorithms visit the same set of
belief-state nodes in trees without terminal nodes, by setting
u′ to theaveragebelief-state size of visited EXPAND-nodes
2-ply from the depth limit, we can interpret the values in the
above table as approximately proportional torun times. Thus,
in the best case,DUB andDBU are faster by roughly a factor
of the average belief-state size in the tree. This is consistent
with our observed speedup: in our 5-ply database, the average
value ofu (as defined above) is approximately 60.

Under the above tree model, with the additional stipulation
that physical states be evenly distributed among percepts,the
worst-case asymptotic memory requirements for efficient im-
plementations of the algorithms are as follows:

DFS, UDB, & DUB O(u0 ∗ pB

∑⌊d/2⌋

i=0
(mB

pB∗pW
)i)

DBU O(u0 ∗
∑⌊d/2⌋

i=0
(mB)i)

PNS& IPNS O(u0 ∗
∑⌊d/2⌋

i=0
(mBmW)i)

UDB andDUB store only a proving branch plus physical
states for other possible percepts, whereasDBU must store
a proof tree andIPNS must store the entire belief-state tree.
Because ofIPNS’s large memory requirements, one might at-
tempt to construct a depth-first variant of the algorithm, anal-
ogous to recent work on ordinaryPNS [Sakuta, 2001].

7 Interleaved state estimation and search
The depth-first method for state estimation described in Sec-
tion 2 can be interleaved with theDBU checkmate-finding al-
gorithm described in Section 6. As each new state is found by
the state estimation algorithm, it is integrated into the current
proof tree. This process continues until a disproof is found
(early termination) or the entire belief state has been proven.

Computation times for “interleaved” vs. “sequential”
methods (usingGL-DBU) applied to each 3-ply database in-
stance are shown in Figure 9. As expected, interleaving can
provide substantial time savings on near-miss instances by
eliminating the need for full state estimation, but has no ef-
fect on the solving of mate instances.

8 Conclusions and further work
We have proposed a new family of statewise-incremental
solvers for belief-state AND-OR trees, and have shown them

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

In
te

rle
av

ed
 T

im
e

(s
)

Sequential Time (s)

Mate
Near-Miss

Figure 9: Results for interleaved state estimation and search.

to yield large performance improvements on a database of
Kriegspiel checkmate problems. Future work will enhance
our complete Kriegspiel player with belief-state transposition
tables (as explored by Sakuta[2001]) and improved methods
for approximate state estimation and nonterminal evaluation,
as well as evaluate further applications of incremental belief-
state search. In particular, we plan to investigate dynamic
move orderings and iterative deepening, further analyze the
combination of incremental search and approximate state es-
timation, and apply incremental search to existing methods
for general play. One might also consider incrementaliza-
tion of partially observable planners and of QBF solvers more
generally.

References
[Allis, 1994] L. V. Allis. Searching for Solutions in Games and

Artificial Intelligence. PhD thesis, University of Limburg, 1994.
[Bertoli et al., 2001] P. Bertoli, A. Cimatti, M. Roveri, and P. Tra-

verso. Planning in nondeterministic domains under partial ob-
servability via symbolic model checking. InIJCAI, 2001.

[Bolognesi and Ciancarini, 2003] A. Bolognesi and P. Ciancarini.
Computer Programming of Kriegspiel Endings: The Case of KR
vs. K. InAdvances in Computer Games 10, 2003.

[Bolognesi and Ciancarini, 2004] A. Bolognesi and P. Ciancarini.
Searching over Metapositions in Kriegspiel. InComputers and
Games 2004. Springer-Verlag, 2004.

[Ciancariniet al., 1997] P. Ciancarini, F. DallaLibera, and
F. Maran. Decision Making under Uncertainty: A Rational
Approach to Kriegspiel. InAdvances in Computer Chess 8,
1997.

[Ferguson, 1992] T. Ferguson. Mate with Bishop and Knight in
Kriegspiel.Theoretical Computer Science, 96:389–403, 1992.

[Ferguson, 1995] T. Ferguson. Mate with the Two Bishops in
Kriegspiel. Technical report, UCLA, 1995.

[Ginsberg, 1999] M. L. Ginsberg. GIB: Steps toward an expert-
level bridge-playing program. InIJCAI, 1999.

[Koller and Pfeffer, 1997] D. Koller and A. Pfeffer. Representa-
tions and solutions for game-theoretic problems.Artificial In-
telligence, 94:167–215, 1997.

[Parkeret al., 2005] A. Parker, D. Nau, and V. S. Subrahmanian.
Game-tree search with combinatorially large belief states. InIJ-
CAI, 2005. (In press).

[Russell and Norvig, 2003] S. Russell and P. Norvig. Artificial
Intelligence: A Modern Approach. Prentice-Hall, Englewood
Cliffs, NJ, 2003.

[Sakuta, 2001] M. Sakuta.Deterministic Solving of Problems with
Uncertainty. PhD thesis, Shizuoka University, 2001.

