
Exploiting Belief State Structure in Graph Search

Jason Wolfe and Stuart Russell
Computer Science Division

University of California, Berkeley, CA 94720
jawolfe@cs.berkeley.edu, russell@cs.berkeley.edu

Abstract

It is well-known that eliminating repeated states is essen-
tial for efficient search of state-space AND-OR graphs. The
same technique has been found useful for searching belief-
state AND-OR graphs, which arise in nondeterministic par-
tially observable planning problems and in partially observ-
able games. Whereas physical states are viewed by search
algorithms as atomic and admit only equality tests, belief
states, which are sets of possible physical states, have addi-
tional structure: one belief state can subsume or be subsumed
by another. This paper presents new algorithms that exploit
this property to achieve substantial speedups. The algorithms
are demonstrated on Kriegspiel checkmate problems and on
a partially observable vacuum world domain.

Introduction
For a wide variety of AI search problems, the identifica-
tion of previously encountered subproblems is essential for
achieving good performance. Successful applications of this
idea to date include A* for single-agent graph search, α-β
with transposition tables for adversarial graph search, for-
ward and backward subsumption in theorem proving, and
the caching of “nogoods” in CSP- and SAT-solving (Ba-
yardo & Schrag 1997) and planning (Hoffmann & Koehler
1999). In this paper, we present a novel application of this
idea for sharing solutions between sets of possible worlds in
partially observable planning problems.

In general, partially observable planning is concerned
with devising strategies for achieving goals even when the
true state of the world is unknown (partial observability),
the effects of actions may be uncertain (nondeterminism),
and future actions may depend on the observations received
to date (contingency). In this paper, we consider finding
fixed-depth, acyclic plans that are guaranteed to reach a goal
within a given number of steps, despite present and future
uncertainty. As we will see, this problem is isomorphic to
that of finding guaranteed win strategies in partially observ-
able games, which ensure that a player will achieve the op-
timal payoff within some finite horizon. One well-known
approach for constructing such plans (see, e.g., Chapters 3
and 12 of (Russell & Norvig 2003)), which we adopt, is to

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search an AND–OR tree whose nodes correspond to belief
states (which are sets of possible physical states).

The idea of detecting exactly repeated belief states during
AND–OR search has already been successfully exploited in
the literature: Sakuta and Iida (2000) consider several hash-
ing schemes, and Bertoli et al. (2001) utilize ordered binary
decision diagrams (OBDDs), both of which allow for the de-
tection of repeated belief states in constant time. Once de-
tected, repeated belief-state nodes are exploited as follows.
First, if a previously evaluated belief state is encountered
again, its value is re-used without additional effort. Second,
cyclic plans are avoided, by detecting when a belief state is
repeated earlier in the current plan. Both works use variants
of a standard DFS (depth-first search) algorithm for search-
ing ordinary AND/OR graphs, which treats belief states as
black boxes that admit only equality tests.

A key observation, which to our knowledge has not been
fully exploited, is that belief states have additional structure
that is relevant for search. In particular, even if two belief
states are not identical, one may be a subset or superset of the
other. This is relevant, because a successful plan for a belief
state is just a plan that works in all of its physical states.
Thus, this plan must also work on any subset of that belief
state; conversely, if no plan exists for some belief state, all
of its supersets must be unsolvable as well.

To our knowledge, only two previous works have ex-
plored this direction. First, Kurien et al. (2002) created the
fragPlan algorithm, which builds up a conformant plan for a
belief state one physical state at a time. Second, Russell and
Wolfe (2005) proposed a general incremental framework for
belief-state AND–OR search, which recognizes uncertainty
over physical states as a new possible search dimension in
addition to depth and breadth. Both works share the same
basic idea: if we build up a plan for a belief state incre-
mentally, we can fail early if we find one of its subsets to
be unsolvable. However, neither of these works attempts to
exploit belief-state structure much beyond this special case.

This paper’s primary contribution is a set of techniques
for fully exploiting the presence of related belief-states in
belief-state AND–OR trees during search. In particular, our
algorithms will efficiently detect previously proved super-
sets and disproved subsets of a current belief state, as well
as generalized cycles in which a subset of the current belief
state appears earlier in the current plan.

DBU

DFS(a)

(c)

(b)

7 8

9 10 17 18 21 22

1615 2019

43 65 12 1311 14

21

a

e f e f

b

c d c d

T T T T T T TF

3

4 7 14 10 17

136 169

2 8 125 15

111

Figure 1: (a) A simple belief-state tree for a nondeterministic do-
main. Circles are nonterminal physical states, T/F are terminal
physical states, rectangles are belief-state OR-nodes, and ovals are
belief-state AND-nodes. (b/c) The order in which search algorithm
DFS/DBU would examine the physical states in this tree.

We first show how to extend DFS to this setting, by sup-
plementing a standard algorithm for AND/OR graph search
with a data structure that supports sub/superset queries. In a
sense, this is an obvious extension to the previous work, and
it is somewhat surprising that it has remained unexplored.
One possible explanation is that since sub/superset queries
come at a potentially hefty cost — unlike equality queries,
they cannot be done in constant time — it is not at all ob-
vious that the benefits of this approach would outweigh the
costs. A key result of this paper is that the extra effort of-
ten does pay off; in two unrelated domains, we demonstrate
order-of-magnitude improvement over previous algorithms.

We also apply this idea to search algorithm DBU, a mem-
ber of the incremental family mentioned above, which was
previously found to be more effective than DFS in some do-
mains (Russell & Wolfe 2005). In the process we develop an
extension of DBU for graph search, which did not exist pre-
viously. This requires some additional insights, since (un-
like DFS) the relationships between belief-state nodes can
change during DBU’s searches. In our experiments, these
new DBU variants provided up to an additional order-of-
magnitude speedup.

In total, we present pseudocode for four search strate-
gies, tree- and graph-search variants of both DFS and DBU.
Each graph variant can be used with either equality or
sub/superset queries, leading to a total of six implemented
algorithms, all of which have been proven sound and com-
plete. Due to lack of space, these proofs are omitted, and
pseudocode has been simplified substantially; details of our
actual implementations are given at the end of each section.

Belief-State AND–OR Trees
A belief-state AND–OR tree naturally captures the space of
potential plans for a nondeterministic, partially observable
planning problem. In such a tree, nodes correspond to be-
lief states (sets of physical states indistinguishable given the
available information), OR-nodes represent action choices
by the planning agent, and AND-nodes represent the arrival
of percepts (new information, which may allow the agent to
discriminate between previously indistinguishable states).

Figure 1(a) shows a simple, abstract example of a belief-
state AND–OR tree. In the root belief-state node there are
two possible physical states (shown as circles), which corre-
spond to different possible world states. The agent knows it

will start in one of these states, but will not know which one;
thus, it must find a (possibly conditional) plan of action that
can achieve the goal from either state. As a concrete exam-
ple, suppose that you and a coauthor are traveling to Provi-
dence to present a paper. Your coauthor has already caught
his flight, and you realize that you are not sure whether or
not he has brought a copy of the slides for the talk.

The root of Figure 1(a) is an OR-node (rectangle), from
which the agent can choose to take action a or b. Each ac-
tion leads to an AND-node (oval), which contains the results
of applying that action in every possible physical state. If
an action has nondeterministic effects, it may take a single
physical state to multiple possible successors. For example.
perhaps the actions correspond to boarding the plane with
your slides either (a) in your checked bag, or (b) in your
carry-on. Moreover, this action is nondeterministic, as your
checked bag may not make it onto the plane with you.

AND-nodes correspond to the arrival of percepts, which
partition the belief state into disjoint subsets based on the
observation expected in each physical state (percepts do not
change the underlying physical states). For example, af-
ter arriving at the Providence airport, you get to observe
whether (c) your bag was lost, or (d) it arrived successfully.
From this point, you can either try to (e) present with your
coauthor’s laptop, or (f) use your own (not all of the possible
options are shown in the figure).

Finally, nodes can be assigned truth values. Physical
states are assigned values first: each one may be nontermi-
nal, true (i.e., a goal state), or false. Then, AND-nodes are
proven (true) iff none of their physical states are false, and
all of their children are proven (since the agent must plan
for all possibilities). Likewise, OR-nodes are proven iff all
of their physical states are true, or any of their children are
proven (since the agent can choose which actions to take). In
the example, only the bottom left physical state (where your
coauthor forgot his slides, and your copy was lost with your
bag) is false; all other possibilities result in a successful
presentation. As a consequence, the three belief-state nodes
on the path a, c, e are false, and all other nodes are true.

A proof tree is a subset of the entire AND–OR tree for
a problem, in which exactly one action is retained at each
OR-node, and the root is proven by the above rules. Such
a proof tree corresponds directly to an executable plan, in
which the agent does the specified action at each OR-node.
For example, the right subtree of the example is a proof tree
for the instance, in which you first do action b, then do action
e or f depending on whether you observe percept c or d. This
plan guarantees that you will reach a true physical state,
regardless of which state you start in and the outcome of the
nondeterministic action b.

An important issue, which we have not yet discussed, is
how belief states should be represented. Symbolic tech-
niques such as the ordered binary decision diagram (OBDD)
methods developed by Bertoli et al. (2001) are popular in
the planning community, since they can sometimes repre-
sent large sets of states compactly. However, such symbolic
methods impose an overhead of several orders of magnitude
for complex games such as chess (Russell & Wolfe 2005),
and except for certain tractable cases (Amir & Russell 2003)

they provide no guarantees of compactness. An alternative
popular in the partially observable games community (Cian-
carini, Libera, & Maran 1997; Sakuta & Iida 2000) is to rep-
resent belief states as explicit sets of atomic physical states.
While this approach is simpler, it can be inefficient for large
but “simple” belief states.1 In this work we choose this lat-
ter option, primarily because it allows us to utilize previous
work on subset queries; however, the ideas presented should
apply to symbolic representations as well.

Searching Belief-State AND–OR Trees
This section describes two algorithms—DFS and DBU—
for searching belief-state AND–OR trees. Figure 1(b+c) de-
picts the order in which these algorithms would examine the
physical states when searching the tree in Figure 1(a).

The first algorithm, DFS, is just standard depth-first
AND–OR search on the belief-state tree. As can be seen
in Figure 1(b), DFS visits each belief-state node in turn,
constructing all of its physical states before moving on to
the next node. Figure 2 provides pseudocode for a re-
cursive implementation of DFS, which can be invoked by
DFS-AND(belief state, depth limit). At OR-nodes, it tries
each move in turn, returning true iff some successor belief
state (corresponding to an AND-node) is solvable. At AND-
nodes, it tries each percept in turn, returning true iff all of
the partitions (corresponding to OR-nodes) are goal states,
or are recursively solvable within the provided depth limit.

The second algorithm, DBU (for depth-then-breadth-
then-uncertainty), is a simple instance of the incremental
search framework described in the introduction. Whenever
DBU encounters a belief state, it first constructs a proof for
a single physical state, and then extends the proof to cover
additional states one-by-one. More specifically, the algo-
rithm performs successive depth-first searches for solutions
in the physical-state trees, with the constraint that the solu-
tions should make up a single belief-state proof tree (which
is continually extended and refined in the process). Unlike
DFS, DBU can find minimal disproofs that consider only
a single element of each belief state (compare, e.g., the left
branches of Figure 1(b) and (c)). In the best case, this leads
to a speedup equal to the average belief-state size in the tree.

The implementation of DBU, which can be invoked by
DBU-AND(new AND-node, belief state, depth), maintains
state in the form of an explicitly represented belief-state
proof tree, which is necessary because the same belief-state
node may be visited multiple times while constructing and
extending a proof. DBU-OR adds a single physical state to
its current proving child at each operation, unless a disproof
of that move is found; in that case, it must repair the plan,
re-examining all previous states on a new possible move.

As written, both DFS and DBU return true or false to in-
dicate whether a problem is solvable or not; they could eas-
ily be extended to return proof trees (i.e., plans) for solvable
instances instead. Each algorithm can be applied directly

1For example, in a propositional domain with n fluents and no
state constraints, the simple formula true represents a belief state
containing all 2n possible states. It is an open question to what
extent such belief states tend to arise arise in realistic domains.

/* states is a set of physical states, d is remaining depth. */

function DFS-OR(states , d) returns true/false
for each m ∈ ACT(states) do

successors← REMOVE-DUPS(∪ s∈states SUCC(s , m))
if DFS-AND(successors , d) then return true

return false

function DFS-AND(states , d) returns true/false
if false ∈ PERCEPTS(states) then return false
for each p ∈ PERCEPTS(states) do

if p = true then continue
if d = 0 then return false
r ← DFS-OR({s | s∈states ∧ PERCEPT(s)=p}, d - 1)
if r 6= true then return r

return true

/* b is a belief-state OR-node or AND-node.
* All nodes have mappings CHILD(b)[k], for move/percepts k .
* OR-nodes have a list of states STATES(b),
* and an ordered list MOVES(b), both initially empty.
* AND-nodes have a set of states VISITED(b). */

function DBU-OR(b, state , d) returns true/false
add state to STATES(b)
new←{state}
for each m ∈ MOVES(b) do

if NULL(CHILD(b)[m]) then
CHILD(b)[m]← a new AND-node

if (∀s∈new)DBU-AND(CHILD(b)[m],SUCC(s ,m),d) then
return true

delete m from MOVES(b) and delete CHILD(b)[m]
new← STATES(b) /* start new proof from scratch */

return false

function DBU-AND(b, states , d) returns true/false
if false ∈ PERCEPTS(states) then return false
for each s ∈ states do

p← PERCEPT(s)
if p = true ∨ s ∈ VISITED(b) then continue
if d = 0 then return false
add s to VISITED(b)
if NULL(CHILD(b)[p]) then

CHILD(b)[p]← a new OR-node with MOVES(·)=ACT(s)
r ← DBU-OR(CHILD(b)[p], s , d - 1)
if r 6= true then return r

return true

Figure 2: DFS and DBU, depth-first belief-state AND–OR tree
search algorithms. ACT(·) returns the applicable actions from some
state(s), SUCC(s , m) returns the successors of physical state s on
action m , and PERCEPT(s) returns the last percept in state s . For
simplicity, we assume that the terminal relation is observable via
the special percepts true/false , and that action preconditions de-
pend only upon observable information; both can be relaxed at the
cost of some additional code complexity.

to find solutions up to some fixed length d, or be combined
with iterative deepening to find optimal (shortest) solutions.

Belief-State AND–OR Graphs
This section describes an extension of our belief-state AND–
OR tree model to incorporate information provided by re-

{s,t,u}

{}

{t}

{s,u}

{s}

{s,t}

{u}

{t,u}

(b) No depth limit
{s,t,u}

{}

{t}

{s,u}

{s}

{s,t}

{u}

{t,u}

Depth 0

{s,t,u}

{}

{t}

{s,u}

{s}

{s,t}

{u}

{t,u}

Depth 1

...

...(a) For ea.
belief state

Depth 0

...

Depth 2

Depth 1

(c)

Figure 3: Subsumption lattices relevant for solving belief-state
AND–OR search problems. Each dotted arc stipulates that if its
source is solvable, then its target is solvable too. (a) If a belief state
is solvable at a given remaining depth, it is solvable at all greater
depths as well. (b) If a belief state is solvable, all of its subsets are
solvable as well. (c) The most general lattice for our problem.

peated and/or related belief states. In particular, we consider
adding new subsumption arcs to our trees, which indicate
that the solvability of a target belief-state node is entailed
by the solvability of a source node. This formulation differs
from the standard approach to state-space graph search, in
that it allows our algorithms to consider relationships be-
tween non-identical nodes. We will begin by looking at
the subsumption lattices underlying the presence of repeated
and related belief states, and then show how this information
can be incorporated into search in the next sections.

In the case of exactly repeated belief states, the subsump-
tion lattice has the simple form shown in Figure 3(a). This
captures the fact that, e.g., the solvability of a belief-state
node {s, t} at remaining depth 5 is entailed by the solvability
of a belief-state node {s, t} at depth 3. In the more general
setting of finding related belief states, we also consider sub-
sumption relationships between belief-states and their sub-
sets, as shown in Figure 3(b). In combination with depth
generalization, this leads to the fully general lattice of Fig-
ure 3(c), which is the one that our algorithms that exploit
related belief states will use.

DFS for Belief-State AND–OR Graphs
This section describes changes to DFS needed to utilize in-
formation about repeated or related belief states. Function-
ality is added to DFS-OR to maintain a cache of previous re-
sults, and discover useful subsumption relationships (drawn
from the reflexive, transitive closure of the relevant lattice)
at each step. In particular, the algorithm will find previous
proofs that subsume the current node, and previous disproofs
or nodes on the stack that are subsumed by the current node.

Figure 4(a) depicts a belief-state graph with subsumption
arcs, which might be constructed by DFS. The first move
from the root leads to AND-node B, which has two children
corresponding to different possible percepts. While the first
child is easily proved, the other child is disproved and so the
algorithm backtracks to try the second move. It proceeds un-
til it hits node J, at which point it discovers a subsumption
cross-edge to E (e.g., perhaps J has belief state {s, t, u} at
remaining depth 4, and E has {s, u} at depth 6). Because J
subsumes E and E is already known to be false, the algo-
rithm concludes that J is also unsolvable and backtracks.

The next interesting point is at node L, where the algo-

A

G

H

MB

C

True
D KI

E

False
F

J L

N

1

32

A

B

C D

(a) (b)

E

?
F

Figure 4: (a) A belief-state AND/OR graph, which includes some
relevant subsumption arcs. For readability, physical states are
not shown. Arcs 1 and 2 are proving and disproving cross-edges
(resp.), whereas arc 3 is a cyclic back-edge. (b) A portion of a
tree that might arise when searching up to node F. Only OR-nodes
and back-edges are shown; we assume that all other moves at OR-
nodes have been disproved. AND-nodes are omitted, as each had
only one relevant branch, which points to the OR-node (shown)
that caused failure by returning stackd.

function DFS-OR(states , d) returns true/false/stackd′

if (⊇)states proven at depth ≤ d then return true
if (⊆)states disproven at depth ≥ d then return false
if (⊆)states on the stack at depth d′ then return stackd′

set states as on the stack at depth d
maxstack← 0
for each m ∈ ACT(states) do

r← DFS-AND(REMOVE-DUPS(∪ s∈states SUCC(s ,m)), d)
if r = true then

set states as off the stack and proved at depth d
return true

else if r = stackd′ then
maxstack←MAX(maxstack , d ′)

set states as off the stack
if maxstack > d then return stackmaxstack

set states as disproved at depth d and return false

Figure 5: DFS-OR for graph search (DFS-AND is unchanged).

rithm discovers a subsumption back-edge to H. This indi-
cates that any plan that works from L would also work at
H directly, and so there is no purpose in considering further
plans from L. This is a generalization of the usual notion
of cyclic plan avoidance, because belief-state L may be a
superset of H rather than being strictly identical to it.

Finally, the algorithm proceeds to examine the third move,
and finds a subsumption cross-edge from node C to node N.
Because node C is already known to be true, this implies
the truth of node N and the algorithm returns success.

Figure 5 shows a modified DFS-OR function, which can
detect and exploit subsumption relationships between nodes
during search. It is essentially just a memoized version of
DFS-OR from Figure 2, with two exceptions. First, the cache
lookups generalize to previously unseen inputs, by drawing
on the relevant subsumption lattice. Second, extra logic has
been added to avoid considering cyclic plans. The basic idea
behind cycle avoidance is simple: while in the process of
solving a belief state, mark it as being on the stack; then,
if an identical belief state (or superset) is encountered while
searching deeper, immediately fail without considering fur-
ther extensions.

However, combining cycle avoidance with memoization

requires additional care, to avoid the so-called graph history
interaction (GHI) problem (Campbell 1985). Consider the
simplified belief-state tree (showing only OR-nodes) in Fig-
ure 4(b), corresponding to a partial DFS search of A up to
node F. The search of child B failed due to detected cycles
on all branches, and so one might consider associating B
with value false in the cache. However, this would be in-
correct: if F is found to be true, then a successful plan may
exist for B as well (through node C). While this plan would
not be relevant in this context, it might be if B was encoun-
tered later in a new context in which A was not on the stack.
Thus, at the point when a node is exited, if there were de-
tected back edges from its descendants to its ancestors, no
value is stored for it in the cache.

If, on the other hand, F was disproved, then it would be
correct to cache A as being false. More generally, if all
cycles have been “closed” without finding a solution, then
all involved nodes are unsolvable. In Figure 5, this logic
is implemented by adding a new return value stackd, dis-
tinct from true or false , which indicates that the search for
a proof was halted due to back edges, the shallowest target
of which was a node on the stack at depth d. This signal is
treated the same way as false, except that it is not cached.2

Our actual implementation includes several improve-
ments, which were omitted in the pseudocode for simplicity.
First, it computes and caches the actual depths of proofs and
disproofs, rather than just using the current remaining depth.
Second, whereas the pseudocode leaves the values of nodes
such as B in Figure 4(b) as “unknown”, our implementation
goes back and assigns them a value whenever possible (e.g.,
if node F was disproved, B-E would all be assigned false).

The DFS= Algorithm
The simplest belief-state graph algorithm we consider is
“DFS=”, which uses our modified DFS procedure in com-
bination with a hash table for detecting exactly repeated be-
lief states in constant time.3 We generalize to new depths by
hashing each belief state to a status object [maxDisproof
stack minProof], initially [-1 nil ∞], which stores the
maximum depth at which the belief state is known to be un-
solvable, the current depth at which it is on the stack (or nil
if none), and the minimum depth at which it is known to be
solvable. Queries are executed by retrieving the object asso-
ciated with a belief state and comparing its remaining depth
with the stored values; then, updates are executed by simply
replacing the relevant values.

2This solution has some similarities to Breuker’s Base-Twin Al-
gorithm (BTA) for best-first search (1998). However, whereas the
BTA considers all identity relationships between nodes, our ap-
proach draws on a subsumption lattice and considers only relevant
subsumption relationships. Moreover, our use of depth-first search
simplifies things considerably; since each node is visited exactly
once, there is no need to regenerate “possible draw” markings or
modify a “base node” through its “twin” like in the BTA.

3Sakuta and Iida (2000) concluded that when physical-state
hash values are Zobrist keys, the best combiner is a simple sum.
While the sum is convenient since it is symmetric, we found that
it leads to a relatively large number of systematic collisions; thus,
our DFS= algorithm uses a simple linear hash function instead,
computed on a sorted list of the hash values of the physical states.

The DFS⊆ Algorithm
Our second graph algorithm, DFS⊆, uses the above search
procedure with a more complex data structure for finding
related belief states. This data structure must maintain a
database of all belief states encountered thus far, and sup-
port finding both proved supersets and disproved or stack-
resident subsets of a query. Although constant-time lookups
and updates don’t seem to be possible in this setting, we
can hope for a data structure that performs reasonably well
in practice. To this end, we draw on an extensive empirical
evaluation of four different subset/superset query algorithms
performed by Helmer and Moerkotte (1999), who concluded
that for both subset and superset lookups, a scheme called
inverted files performs best.

Thus, our implementation of DFS⊆ uses inverted files,
maintaining a hash table that maps from each physical state
to the set of belief states encountered thus far that contain it.
Various lookup schemes are possible within this framework;
in our current implementation, we do an optimized version
of the following. When a belief state is added to the data
structure, a new status object consisting of [maxDisproof
stack minProof] and the belief-state size is added to lists
hashed under each of its constituent physical states. Then,
upon receiving a query set at a given depth, we retrieve the
lists corresponding to its elements, and count the number of
lists in which each status object appears. If a belief state
proved at lower remaining depth appears in all of the lists,
then it must be a superset of the query and we return it as a
proof; likewise, if a belief state on the stack or disproved at
greater remaining depth appears in the same number of lists
as its size, then it must be a subset of the query and we return
it as a disproof or cycle as appropriate.

DBU for Belief-State AND–OR Graphs
This section describes a graph version of DBU, along with
appropriate data structures for finding repeated or related be-
lief states in this setting.

Because DBU works at the level of individual physical
states rather than entire belief states, it can gather more in-
formation than DFS. For instance, suppose that DBU is
called on a belief state with 10 elements, and it incrementally
finds a proof covering the first 5 states before discovering a
disproof upon adding the sixth one. In the process, it learns
that the belief state with five states is solvable, whereas the
one with six is unsolvable. In the same situation, DFS
would only learn that the entire 10-state belief state is un-
solvable. Thus, during its searches DBU learns about both
more proofs and more general disproofs than DFS.

However, this greater potential comes at a cost. First,
since DBU-OR is called once for each physical state gener-
ated, the overhead of doing a belief-state lookup at each step
will be substantially higher than for the corresponding ver-
sions of DFS. Second, there are algorithmic complications
arising from the fact that the subsumption relationships in
DBU’s trees can change during search, when new physical
states are added to existing belief-state nodes. In particu-
lar, when a new state is added to a belief-state node, it may
become equal to or a superset of some previous nodes, and
cease being equal to or a subset of other previous nodes. The

/* OR-nodes are now augmented with list of states NEW(b),
* and a list of moves LOOPY(b), both initially empty. */

function DBU-OR(b, state , d) returns true/false/stackd′

move all moves from LOOPY(b) to the end of MOVES(b)
add state to NEW(b)
states← NEW(b) ∪ STATES(b)
if (⊇)states proven at depth ≤ d then return true
if (⊆)states disproven at depth ≥ d then return false
if (⊆)states on the stack at depth d′ then return stackd′

set states as on the stack at depth d
maxstack← 0
for each m ∈ MOVES(b) do

if NULL(CHILD(b)[m]) then
CHILD(b)[m]← a new AND-node

r ←(∀s∈NEW(b))DBU-AND(CHILD(b)[m],SUCC(s ,m),d)
if r = true then

move all states from NEW(b) to STATES(b)
set states as off the stack and proved at depth d
return true

else if r = stackd′ then
add m to LOOPY(b)
maxstack←MAX(maxstack , d ′)

delete m from MOVES(b) and delete CHILD(b, m)
move all states from STATES(b) to NEW(b)

set states as off the stack
if maxstack > d then return stackmaxstack

set states as disproved at depth d and return false

Figure 6: DBU-OR for graph search (DBU-AND is unchanged).

first case is not problematic, since the algorithm will auto-
matically discover the new relationships; the second case, on
the other hand, will require extra care to ensure correctness.

Figure 6 shows a modified DBU-OR function for graph
search. The modifications to DBU-OR are the same as for
DFS-OR, with two changes needed to handle the above issue.

The first problem case arises when a new state that is
added to an OR-node breaks a previous proving cross-edge.
Then, our algorithm must go back to searching for a solu-
tion, being careful to start up where it left off. In Figure 6,
the list NEW(b) is used to keep track of the set of states that
have not yet been integrated into an explicit proof at node b.

The second problem case is a bit more subtle, so we will
illustrate it with a concrete example. Suppose that the tree
in Figure 4(b) is a portion of a larger tree for some problem
instance, which was constructed on a first visit to node A.
Then, further search at F succeeded in finding a plan for its
current belief state, and so the algorithm returned to the par-
ent of A (not shown). Here it found another physical state
that had not yet been considered at A. Finally, the algorithm
attempted to incorporate this new state into the plan at A,
and by extension F, but failed. At this point, we might in-
correctly conclude that A is unsolvable with the new physi-
cal state added. However, it might be the case that the new
physical state broke one of the cycles in B’s subtree, so that
new acyclic plans are possible at C and/or E. The change
to deal with this case is simple: when a recursive call on a
move fails with stackd, that move is pushed onto a special
list LOOPY(b). Then, whenever new states are added to node
b, these LOOPY moves are returned to MOVES(b) so that they

will be attempted again in this new context.
Our actual implementation includes several improve-

ments in addition to those described for DFS, which for
simplicity are omitted in the pseudocode, First, when a
proving cross-edge is broken, our implementation searches
first on the move that was associated with the previous
proof, as a domain-independent heuristic; to support this,
our cache data structures are augmented to store a “proving
move” along with each proof. Second, rather than discard-
ing “loopy” subtrees and potentially regenerating them every
time a belief-state node changes, we keep them around and
simply re-check whether the added states have broken any
of the cycles. A further optimization keeps track of simple
conditions under which a subtree need not be re-checked.

The DBU= Algorithm
The hash-table data structure described for DFS= can be
used unmodified with the new DBU search procedure to
yield a “DBU=” algorithm. However, we note that the space
requirements for DBU= are linear in the number of physical
states constructed, rather than belief states (like DFS=).

The DBU⊆ Algorithm
The inverted file data structure used in DFS⊆ can also be
used unmodified to produce a DBU⊆ algorithm. However,
unlike in the strict equality case, here there are substantial
improvements that can be made, and we have done so.

In particular, we note that whereas the space requirements
for DFS⊆ were linear in the total number of physical states
constructed, the requirements for DBU⊆with the same data
structure would be much worse. This is because when prov-
ing a belief state with n physical states, DBU will first prove
a subset of size 1, then a subset of size 2, and so on up to
n. Naively storing each of these subsets as separate objects
would impose quadratic space requirements, as well as slow
down queries, since the number of candidate belief states to
search through would grow accordingly.

Fortunately, there is a simple solution to this problem,
which exploits the nested structure of the belief states con-
sidered by DBU. At each step, DBU adds a physical state
into a pre-existing belief-state node, which must already cor-
respond to an object in the cache. Rather than constructing
a new cache entry for the augmented belief state, we can
simply extend the old entry to cover the new state.

This can be implemented by extending the status ob-
jects to have forms such as ((s1, 3,m1), (s2, 5,m2),
(s3, 3, disproof)), which compactly conveys that belief
state {s1} is solvable at depth 3 by move m1, {s1, s2} is
solvable at depth 5 by move m2, and {s1, s2, s3} is unsolv-
able at depth 3 (the special value stack is allowed in this last
position as well). Each of the tuples (s, d,m) has a pointer
to the entire status object, and is hashed on a list keyed by
s. This “telescoped” representation is efficient to store and
update; most cache operations simply require adding a new
tuple to an existing status object, and then pushing this tu-
ple onto the appropriate index list. Finally, by a fairly sim-
ple extension of the procedure described for DFS⊆, this data
structure can be efficiently queried to find relevant subsets
and supersets during search.

Experiments
This section evaluates our six search algorithms (DFS and
DBU, each in baseline, “=”, and “⊆” varieties) on two dif-
ferent tasks: nondeterministic vacuum world planning prob-
lems and Kriegspiel (partially observable chess) checkmate
problems. For simplicity, the search algorithms are com-
pared without heuristics; however, we expect that observed
speedups should generalize to other settings as well. To pre-
vent systematic biases in our results, all arbitrary choices
(e.g., move orderings) are randomized.

Vacuum-World Planning Problems
Our first set of test problems are drawn from a partially ob-
servable, nondeterministic vacuum world domain (a variant
of that in (Russell & Norvig 2003)). An agent is situated
in a w × h grid in which some squares may be dirty, only
its current square is observable, and the goal is to make all
of the squares clean. The available actions are left, right,
up, down, and suck. suck unconditionally makes the cur-
rent square clean, whereas the move actions always succeed
but are only applicable when they lead to valid squares. The
catch is that the agent is malfunctioning, so that when it goes
down or right it may cause the source square to become dirty,
without knowing whether or not this has occurred. This is a
good test domain because its problems instances are simple,
involve nontrivial nondeterminism and partial observability
while still admitting guaranteed plans, and vary widely in
difficulty (primarily with the size of the world).

Our first experiments considered boards of size 2× h for
heights h ranging from 1 to 7, where the goal was always for
the agent to leave the board clean, starting from a singleton
initial belief state with the agent in the upper-left square and
only the bottom-right square dirty. The depth limit was al-
ways set to the length of the optimal solution, 3∗h+1. Each
algorithm was tested 20 times on problems of each size, and
the run-time and number of physical states constructed were
recorded for each run. Trials taking more than 104 seconds
or 400 MB of memory were halted early. The median results
of these runs are depicted in Figure 7. The graph shows me-
dian run time (in log scale) as a function of problem size, for
each algorithm. The table shows the same results, limited to
problem sizes 4-6 but also including the median number of
physical states constructed.

The performance of the algorithms varies widely, span-
ning 3-4 orders of magnitude even on the fairly small 2× 4
problem instances. Some kind of repeated state detection is
clearly necessary for good performance: the baseline algo-
rithms both run out of time on problems of size 5 and greater.
DFS= and DBU= perform better, until they run out mem-
ory at sizes 6 and 7 (resp.). Finally, DFS⊆ and DBU⊆ are
able to scale successfully to 2× 7 problems (and beyond).

We are most interested in comparing our 3 new algo-
rithms, DFS⊆, DBU=, and DBU⊆, to the best previously
existing algorithm, DFS=. Thus, we will contrast these four
algorithms’ quantitative performance on 2×5 problems, the
largest that all four could solve. A first thing to note is
that all else being equal, subset testing and DBU are prefer-
able to equality testing and DFS; indeed, DBU⊆ is about
20 times faster than DFS=, and constructs nearly 80 times

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 1 2 3 4 5 6 7

M
e
d

ia
n

 s
o
lu

ti
o
n

 t
im

e
 (

s)

Problem size

Solution Time vs. Problem Size

DFS

DBU

DFS=

DBU=

DFS⊆

DBU⊆

Size 4 5 6
Time States Time States Time States

DFS 502.3 49036K * * * *
DFS= 3.4 257K 46.1 3961K ** **
DFS⊆ 0.8 36K 5.1 309K 46.4 3023K
DBU 174.6 5892K * * * *
DBU= 0.5 11K 6.2 117K 37.3 631K
DBU⊆ 0.4 10K 2.4 52K 10.6 217K

Figure 7: Performance of 6 algorithms on 2 × h vacuum-world
problems, for various problem sizes h, with a depth limit equal to
the optimal solution length. All values are medians over 20 runs.
Runtimes are in seconds. Top: solution time (in log scale) as a
function of problem size, for each of the six algorithms. Bottom:
table of results, for a subset of problem sizes. “States” is the total
number of physical states constructed. (*) and (**) indicate that a
run exceeded the 10,000s time limit or 400MB memory limit, resp.

fewer physical states (which might be a concern if physical
state operations were expensive, unlike in this domain).

Delving a bit deeper, we see that simply switching from
DFS= to DFS⊆ improves performance by about a factor of
10, in terms of both runtime and physical states. This in it-
self might be surprising; even more so is the fact that subset
testing seems to carry only about 25% greater overhead than
equality testing, measured by comparing the ratios of phys-
ical states examined / runtime. DBU= performs nearly as
well as DFS⊆ in terms of runtime, and nearly 3 times better
in terms of physical states examined; DBU⊆ improves upon
this by a further factor of 2.5.

Finally, we briefly review some additional statistics.
Across the board, about 30% of lookups with equality test-
ing returned results, whereas for subset testing this number
was closer to 60%. In both cases, less than 0.5% of the hits
were proofs, 50-80% were disproofs, and the rest were cy-
cles. These proportions are at least partially explained by
the depth limit, which causes there to be many more false
physical states than true ones in the belief-state trees.

Kriegspiel Checkmate Problems

Our second set of experiments used checkmate problems
drawn from the game of Kriegspiel, a partially observable
variant of chess in which each player cannot see the pieces
or moves of her opponent, but instead receives limited per-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

P
ro

p
o

rt
io

n
 p

ro
b

le
m

s
so

lv
ed

Solution time limit (s)

Proportion Problems Solved vs. Time Limit

DBU⊆

DBU=

DFS⊆

DFS=

Figure 8: Results on solvable 7-ply Kriegspiel checkmate prob-
lems. The y-axis shows the fraction of problems solved within a
given amount of CPU time (in log scale). The algorithms are listed
in decreasing order of efficiency.

cepts about captures, checks, and illegal move attempts.4

In particular, we used a database of 500 7-ply Kriegspiel
checkmate problems, which span a wide range of difficulty
levels.5 While 7-ply problems might sound trivial, they are
actually quite difficult due to the try-until-feasible property:
in Kriegspiel, a player must keep attempting moves on her
turn until one succeeds. Thus, the worst-case branching fac-
tor for a single ply is factorial in the number of potentially
legal actions, which is typically between 10 and 30.

Figure 8 shows the performance of our algorithms on
this database, graphed as the proportion of problems solved
within a given run-time limit. DFS and DBU are not shown,
as they could only solve a few percent of the problems within
the time limit. DBU= and DBU⊆ solved all 500 problems,
whereas DFS= failed to solve about 20% solely due to the
104 second time restriction, and DFS⊆ failed to solve about
10% solely due to the 400 MB memory restriction.

The results are qualitatively quite similar to the previous
set; again, all else being equal, subset testing and DBU are
better, and the differences between the algorithms are more
pronounced on more difficult problems. For problems in
the 50th percentile of difficulty we see about a factor of 10
speedup over the best previously existing algorithm, and by
the 80th percentile this factor has grown to about 50.

Conclusions and Future Work
We have proposed several new sound and complete algo-
rithms for belief-state AND–OR search, and shown them
to yield more than an order of magnitude performance im-
provement on two very different test domains. However,
there is still much work to be done.

4These problems are modeled as single-agent planning prob-
lems by treating the opponent’s turns as situations in which our
agent has only one available “no-op” action, which has nondeter-
ministic effects corresponding to the opponent’s possible moves.

5More information on Kriegspiel and this database is online at
http://cs.berkeley.edu/∼jawolfe/kriegspiel/.

A first possibility is to investigate the individual contribu-
tions of cached proofs, cached disproofs, and cycle check-
ing to the performance improvements observed, and use this
data to develop alternative subset lookup schemes. Because
memory is a primary limitation in scaling these algorithms
to larger problems, one might also consider removing sub-
sumed entries from the cache data structures, and/or simply
taking a memory-bounded approach and forgetting as nec-
essary when memory becomes scarce.

Another direction is to consider utilizing related belief
states in a domain-independent heuristic for move ordering.
For example, a move that led to a proof on a subset (or inter-
secting set) of the current belief state seems more promising
than a move that led to a disproof on a superset, and should
perhaps be tried first.

A final possibility is to investigate applications to sym-
bolic belief state representations (e.g., BDDs) and other
search algorithms (e.g., Proof-Number Search (Allis 1994)),
as well as extensions for probabilistic planning.

Acknowledgments
This research was supported in part by the DARPA REAL
program, award FA8750-04-2-0222. We would also like to
thank the anonymous reviewers for their helpful comments.

References
Allis, L. V. 1994. Searching for Solutions in Games and Artificial
Intelligence. Ph.D. Dissertation, University of Limburg.
Amir, E., and Russell, S. 2003. Logical filtering. In IJCAI, 75–82.
Bayardo, Jr., R. J., and Schrag, R. C. 1997. Using CSP look-back
techniques to solve real-world SAT instances. In AAAI, 203–208.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001. Plan-
ning in nondeterministic domains under partial observability via
symbolic model checking. In IJCAI, 473–478.
Breuker, D. 1998. Memory versus Search in Games. Ph.D. Dis-
sertation, Universiteit Maastricht.
Campbell, M. 1985. The graph-history interaction: on ignoring
position history. In Proc. ACM, 278–280.
Ciancarini, P.; Libera, F. D.; and Maran, F. 1997. Decision Mak-
ing under Uncertainty: A Rational Approach to Kriegspiel. In
Advances in Computer Chess 8, 277–298.
Helmer, S., and Moerkotte, G. 1999. A study of four index struc-
tures for set-valued attributes of low cardinality. Technical Report
TR-1999-002, University of Mannheim.
Hoffmann, J., and Koehler, J. 1999. A new method to index and
query sets. In IJCAI, 462–467.
Kurien, J.; Nayak, P.; and Smith, D. 2002. Fragment-based con-
formant planning. In AIPS, 153–162.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition.
Russell, S., and Wolfe, J. 2005. Efficient belief-state AND-OR
search, with application to Kriegspiel. In IJCAI, 278–285.
Sakuta, M., and Iida, H. 2000. Solving Kriegspiel-like problems:
Exploiting a transposition table. ICGA Journal 23(4):218–229.

