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Abstract
High-level actions (HLAs) are essential tools for coping with
the large search spaces and long decision horizons encoun-
tered in real-world decision making. In a recent paper, we
proposed an “angelic” semantics for HLAs that supports
proofs that a high-level plan will (or will not) achieve a goal,
without first reducing the plan to primitive action sequences.
This paper extends the angelic semantics with cost informa-
tion to support proofs that a high-level plan is (or is not) op-
timal. We describe the Angelic Hierarchical A* algorithm,
which generates provably optimal plans, and show its advan-
tages over alternative algorithms. We also present the Angelic
Hierarchical Learning Real-Time A* algorithm for situated
agents, one of the first algorithms to do hierarchical looka-
head in an online setting. Since high-level plans are much
shorter, this algorithm can look much farther ahead than pre-
vious algorithms (and thus choose much better actions) for a
given amount of computational effort.

Introduction
Humans somehow manage to choose quite intelligently the
twenty trillion primitive motor commands that constitute a
life, despite the large state space. It has long been thought
that hierarchical structure in behavior is essential in manag-
ing this complexity. Structure exists at many levels, ranging
from small (hundred-step?) motor programs for typing char-
acters and saying phonemes up to large (billion-step?) ac-
tions such as writing an ICAPS paper, getting a good faculty
position, and so on. The key to reducing complexity is that
one can choose (correctly) to write an ICAPS paper without
first considering all the character sequences one might type.

Hierarchical planning attempts to capture this source of
power. It has a rich history of contributions (to which we
cannot do justice here) going back to the seminal work of
Tate (1977). The basic idea is to supply a planner with a
set of high-level actions (HLAs) in addition to the primitive
actions. Each HLA admits one or more refinements into se-
quences of (possibly high-level) actions that implement it.
Hierarchical planners such as SHOP2 (Nau et al. 2003) usu-
ally consider only plans that are refinements of some top-
level HLAs for achieving the goal, and derive power from
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constraints placed on the search space by the refinement hi-
erarchy.

One might hope for more; consider, for example, the
downward refinement property: every plan that claims to
achieve some condition does in fact have a primitive re-
finement that achieves it. This property would enable the
derivation of provably correct abstract plans without refin-
ing all the way to primitive actions, providing potentially
exponential speedups. This requires, however, that HLAs
have clear precondition–effect semantics, which have until
recently been unavailable (McDermott 2000). In a recent pa-
per (Marthi, Russell, & Wolfe 2007) — henceforth (MRW
’07) — we defined an “angelic semantics” for HLAs, spec-
ifying for each HLA the set of states reachable by some re-
finement into a primitive action sequence. The angelic ap-
proach captures the fact that the agent will choose a refine-
ment and can thereby choose which element of an HLA’s
reachable set is actually reached. This semantics guarantees
the downward refinement property and yields a sound and
complete hierarchical planning algorithm that derives sig-
nificant speedups from its ability to generate and commit to
provably correct abstract plans.

Our previous paper ignored action costs and hence our
planning algorithm used no heuristic information, a main-
stay of modern planners. The first objective of this paper
is to rectify this omission. The angelic approach suggests
the obvious extension: the exact cost of executing a high-
level action to get from state s to state s′ is the least cost
among all primitive refinements that reach s′. In practice,
however, representing the exact cost of an HLA from each
state s to each reachable state s′ is infeasible, and we de-
velop concise lower and upper bound representations. From
this starting point, we derive the first algorithm capable of
generating provably optimal abstract plans. Conceptually,
this algorithm is an elaboration of A*, applied in hierarchical
plan space and modified to handle the special properties of
refinement operators and use both upper and lower bounds.
We also provide a satisficing algorithm that sacrifices opti-
mality for computational efficiency and may be more useful
in practice. Preliminary experimental results show that these
algorithms outperform both “flat” and our previous hierar-
chical approach.

The paper also examines HLAs in the online setting,
wherein an agent performs a limited lookahead prior to se-



lecting each action. The value of lookahead has been amply
demonstrated in domains such as chess. We believe that hi-
erarchical lookahead with HLAs can be far more effective
because it brings back to the present value information from
far into the future. Put simply, it’s better to evaluate the pos-
sible outcomes of writing an ICAPS paper than the possible
outcomes of choosing “A” as its first character. We derive an
angelic hierarchical generalization of Korf’s LRTA* (1990),
which shares LRTA*’s guarantees of eventual goal achieve-
ment on each trial and eventually optimal behavior after re-
peated trials. Experiments show that this algorithm substan-
tially outperforms its nonhierarchical ancestor.

Background
Planning Problems
Deterministic, fully observable planning problems can be
described in a representation-independent manner by a tuple
(S, s0, t,L, T, g), where S is a set of states, s0 is the initial
state, t is the goal state,1 L is a set of primitive actions, and
T : S × L → S and g : S × L → R are transition and cost
functions such that doing action a in state s leads to state
T (s, a) with cost g(s, a). These functions are overloaded
to operate on sequences of actions in the obvious way: if
a = (a1, . . . , am), then T (s,a) = T (. . . T (s, a1) . . . , am)
and g(s,a) is the total cost of this sequence. The objective
is to find a solution a ∈ L∗ for which T (s0,a) = t.
Definition 1. A solution a∗ is optimal iff it reaches the goal
with minimal cost: a∗ = argmina∈L∗:T (s0,a)=t g(s0,a).

To ensure that an optimal solution exists, we require that
every cycle in the state space has positive cost.

In this paper, we represent S as the set of truth assign-
ments to some set of ground propositions, and T using the
STRIPS language (Fikes & Nilsson 1971).

As a running example, we introduce a simple “nav-
switch” domain. This is a grid-world navigation domain
with locations represented by propositions X(x) and Y(y)
for x ∈ {0, ..., xmax} and y ∈ {0, ..., ymax}, and actions
U, D, L, and R that move between them. There is a sin-
gle global “switch” that can face horizontally (H) or ver-
tically (¬H); move actions cost 2 if they go in the current
direction of the switch and 4 otherwise. The switch can be
toggled by action F with cost 1, but only from a subset of
designated squares. The goal is always to reach a partic-
ular square with minimum cost. Since these goals corre-
spond to 2 distinct states (H, ¬H), we add a dummy action
Z with cost 0 that moves from these (pseudo-)goal states to
the single terminal state t. For example, in a 2x2 problem
(xmax = ymax = 1) where the switch can only be tog-
gled from the top-left square (0, 0), if the initial state s0 is
X(1) ∧ Y(0) ∧ H, the optimal plan to reach the bottom-left
square (0, 1) is (L, F, D, Z) with cost 5.

High-Level Actions
In addition to a planning problem, our algorithms will be
given a set A of high-level actions, along with a set I(a) of

1A problem with multiple goal states can easily be translated
into an equivalent problem with a single goal state.

allowed immediate refinements for each HLA a ∈ A. Each
immediate refinement consists of a finite sequence a ∈ Ã∗,
where we define Ã = A ∪ L as the set of all actions. Each
HLA and refinement may have an associated precondition,
which specifies conditions under which its use is appropri-
ate.2 To make a high-level sequence more concrete we may
refine it, by replacing one of its HLAs by one of its immedi-
ate refinements, and we call one plan a refinement of another
if it is reachable by any sequence of such steps. A primitive
refinement consists only of primitive actions, and we define
I∗(a, s) as the set of all primitive refinements of a that obey
all HLA and refinement preconditions when applied from
state s. Finally, we assume a special top-level action Act∈A,
and restrict our attention to plans in I∗(Act, s0).
Definition 2. (Parr & Russell 1998) A plan ah∗ is hierarchi-
cally optimal iff ah∗=argmina∈I∗(Act,s0):T (s0,a)=t g(s0,a).
Remark. Because the hierarchy may constrain the set of
allowed sequences, g(s0,ah∗) ≥ g(s0,a∗).

When equality holds from all possible initial states, the
hierarchy is called optimality-preserving.

The hierarchy for our running example has three HLAs:
A = {Nav, Go, Act}. Nav(x, y) navigates directly to loca-
tion (x, y); it can refine to the empty sequence iff the agent
is already at (x, y), and otherwise to any primitive move ac-
tion followed by a recursive Nav(x, y). Go(x, y) is like Nav,
except that it may flip the switch on the way; it either re-
fines to (Nav(x, y)), or to (Nav(x′, y′), F, Go(x, y)) where
(x′, y′) can access the switch. Finally, Act is the top-level
action, which refines to (Go(xg, yg), Z), where (xg, yg) is
the goal location. This hierarchy is optimality-preserving
for any instance of the nav-switch domain.

Optimistic and Pessimistic Descriptions
for HLAs

As mentioned in the introduction, our angelic semantics
(MRW ’07) describes the outcome of a high-level plan by
its reachable set of states (by some refinement). However,
these reachable sets say nothing about costs incurred along
the way. This section describes a novel extension of the
angelic approach that includes cost information. This will
allow us to find good plans quickly by focusing on better-
seeming plans first, and pruning provably suboptimal high-
level plans without refining them further. Due to lack of
space, proofs are omitted.3

We begin with the notion of an exact description Ea of
an HLA a, which specifies, for each pair of states (s, s′),
the minimum cost of any primitive refinement of a that leads
from s to s′ (this generalizes our original definition).
Definition 3. The exact description of HLA a is a function
Ea(s)(s′) = infb∈I∗(a,s):T (s,b)=s′ g(s,b).
Remark. Definition 3 implies that if s′ is not reachable
from s by any refinement of a, Ea(s)(s′) = ∞.

2We treat these preconditions as advisory, so for our purposes a
planning algorithm is complete even if it takes them into account,
and sound even if it ignores them.

3An expanded paper with proofs is available at
http://www.cs.berkeley.edu/∼jawolfe/angelic/



We can think of descriptions as functions from states to
valuations (themselves functions S → R∪{∞}) that specify
a reachable set plus a finite cost for each reachable state (see
Figure 1(b)). Then, descriptions can be extended to func-
tions from valuations to valuations, by defining Ēa(v)(s′) =
mins∈S v(s) + Ea(s)(s′). Finally, these extended descrip-
tions can be composed to produce descriptions for high-level
sequences: the exact description of a high-level sequence a
= (a1, . . . , aN ) is simply ĒaN

◦ . . . ◦ Ēa1 .
Definition 4. The initial valuation v0 has v0(s0) = 0 and
v0(s) = ∞ for all s 6= s0.
Theorem 1. For any integer N , final state sN , and ac-
tion sequence a ∈ ÃN , the minimum over all state se-
quences (s1, ..., sN−1) of total cost

∑N
i=1 Eai(si−1)(si)

equals ĒaN
◦ . . . ◦ Ēa1(v0)(sN ). Moreover, for any such

minimizing state sequence, concatenating the primitive re-
finements of each HLA ai that achieve the minimum cost
Eai(si−1, si) for each step yields a primitive refinement of
a that reaches sN from s0 with minimal cost.

Thus, an efficient, compact representation for Ea would
(under mild conditions) lead to an efficient optimal planning
algorithm. Unfortunately, since deciding even simple plan
existence is PSPACE-hard (Bylander 1994), we cannot hope
for this in general. Thus, we instead consider principled
compact approximations to Ea that still allow for precise
inferences about the effects and costs of high-level plans.
Definition 5. A valuation v1 (weakly) dominates another
valuation v2, written v1 � v2, iff (∀s ∈ S) v1(s) ≤ v2(s).
Definition 6. An optimistic description Oa of HLA a satis-
fies (∀s) Oa(s) � Ea(s).

For example, our optimistic description of Go (see Fig-
ure 1(a/c)) specifies that the cost for getting to the tar-
get location (possibly flipping the switch on the way) is at
least twice its Manhattan distance from the current location;
moreover, all other states are unreachable by Go.
Definition 7. A pessimistic description Pa of HLA a satis-
fies (∀s) Ea(s) � Pa(s).

For example, our pessimistic description of Go specifies
that the cost to reach the destination is at most four times its
Manhattan distance from the current location.

(Optimistic and pessimistic descriptions generalize our
previous complete and sound descriptions (MRW ’07).)
Remark. For primitive actions a ∈ L, Oa(s)(s′) =
Pa(s)(s′) = g(s, a) iff s′ = T (s, a),∞ otherwise.

In this paper, we will assume that the descriptions are
given along with the hierarchy. However, we note that it
is theoretically possible to derive them automatically from
the structure of the hierarchy.

As with exact descriptions, we can extend optimistic and
pessimistic descriptions and then compose them to produce
bounds on the outcomes of high-level sequences, which we
call optimistic and pessimistic valuations (see Figure 1(c/d)).
Theorem 2. Given any sequence a ∈ ÃN and state s,
the cost c = infb∈I∗(a,s0)|T (s0,b)=s g(s0,b) of the best
primitive refinement of a that reaches s from s0 satisfies
ŌaN

◦ . . . ◦ Ōa1(v0)(s) ≤ c ≤ P̄aN
◦ . . . ◦ P̄a1(v0)(s).

(a) Properties of HLA Go(xt, yt) (precondition X(xs) ∧ Y(ys))
refs (Nav(xt, yt))

(Nav(x, y), F, Go(xt, yt)) (∀x, y) s.t. a switch at (x, y)
optimistic −X(xs), −Y(ys), +X(xt), +Y(yt), ±̃H

cost ≥ 2 ∗ (|xt − xs|+ |yt − ys|)
pessimistic −X(xs), −Y(ys), +X(xt), +Y(yt)

cost ≤ 4 ∗ (|xt − xs|+ |yt − ys|)

∞ ∞

6 ∞

∞ ∞

5 ∞

6

8

7

5

(b) (c) (d)

10
...

∞ ∞

4 ∞

∞ ∞

4 ∞

∞ ∞

8 ∞

∞ ∞

∞ ∞

Figure 1: Some examples taken from our example nav-switch prob-
lem. (a) Refinements and NCSTRIPS descriptions of the Go HLA.
(b) Exact valuation from s0 for Go(0, 1). Gray rounded rectangles
represent the state space; in the top four states (circles) the switch
is horizontal, and in the bottom four it is vertical. Each arrow repre-
sents a primitive refinement of Go(0, 1); the cost assigned to each
state is the min cost of any refinement that reaches it. The exact
reachable set corresponding to this HLA is also outlined. (c) Opti-
mistic simple valuation X(0)∧¬X(1)∧¬Y(0)∧Y(1) : 4 for the
example in (b), as would be produced by the description in (a). (d)
Pessimistic simple valuation X(0)∧¬X(1)∧¬Y(0)∧Y(1)∧H : 8.

Moreover, following Theorem 1, these are the tightest
bounds derivable from a set of HLA descriptions.

Representing and Reasoning with Descriptions
Whereas the results presented thus far are representation-
independent, to utilize them effectively we require compact
representations for valuations and descriptions as well as ef-
ficient algorithms for operating on these representations.

In particular, we consider simple valuations of the form
σ : c where σ ⊆ S and c ∈ R, which specify a reachable
set of states along with a single numeric bound on the cost
to reach states in this set (all other states are assigned cost
∞). As exemplified in Figure 1(c/d), an optimistic simple
valuation asserts that states in σ may be reachable with cost
at least c, and other states are unreachable; likewise, a pes-
simistic simple valuation asserts that each state in σ is reach-
able with cost at most c, and other states may be reachable
as well.4

Simple valuations are convenient, since we can reuse our
previous machinery (MRW ’07) for reasoning with reach-
able sets represented as DNF (disjunctive normal form) log-
ical formulae and HLA descriptions specified in a language
called NCSTRIPS (Nondeterministic Conditional STRIPS).
NCSTRIPS is an extension of ordinary STRIPS that can ex-
press a set of possible effects with mutually exclusive con-
ditions. Each effect consists of four lists of propositions:
add (+), delete (−), possibly-add (+̃), and possibly-delete
(−̃). Added propositions are always made true in the re-
sulting state, whereas possibly-added propositions may or
may not be made true; in a pessimistic description, the
agent can force either outcome, whereas in an optimistic
one the outcome may not be controllable. By extending

4More interesting tractable classes of valuations are possible;
for instance, rather than using a single numeric bound, we could
allow linear combinations of indicator functions on state variables.



NCSTRIPS with cost bounds (which can be computed by
arbitrary code), we produce descriptions suitable for the ap-
proach taken here. Figure 1(a) shows possible descriptions
for Go in this extended language (as is typically the case,
these descriptions could be made more accurate at the ex-
pense of conciseness by conditioning on features of the ini-
tial state).

With these representational choices, we require an algo-
rithm for progressing a simple valuation represented as a
DNF reachable set plus numeric cost bound through an ex-
tended NCSTRIPS description. If we perform this progres-
sion exactly, the output may not be a simple valuation (since
different states in the reachable set may produce different
cost bounds). Thus, we will instead consider an approxi-
mate progression algorithm that projects results back into
the space of simple valuations. Applying this algorithm re-
peatedly will allow us to compute optimistic and pessimistic
simple valuations for entire high-level sequences.

The algorithm is a simple extension of that given in
(MRW ’07), which progresses each (conjunctive clause,
conditional effect) pair separately and then disjoins the re-
sults. This progression proceeds by (1) conjoining effect
conditions onto the clause (and skipping this clause if a con-
tradiction is created), (2) making all added (resp. deleted)
literals true (resp. false), and finally (3) removing liter-
als from the clause if false (resp. true) and possibly-added
(resp. possibly-deleted). With our extended NCSTRIPS de-
scriptions, each (clause, effect) pair also produces a cost
bound. When progressing optimistic (resp. pessimistic) val-
uations, we simply take the min (resp. max) of all these
bounds plus the initial bound to get the cost bound for the
final valuation.5

Our above definitions need some minor modifications to
allow for such approximate progression algorithms. For
simplicity, we will absorb any additional approximation into
our notation for the descriptions themselves:
Definition 8. An approximate progression algorithm corre-
sponds to, for each extended optimistic and pessimistic de-
scription Ōa and P̄a, (further) approximated descriptions Õa

and P̃a. Call the algorithm correct if, for all actions a and
valuations v, Õa(v) � Ōa(v) and P̄a(v) � P̃a(v).

Intuitively, a progression algorithm is correct as long as
the errors it introduces only further weaken the descriptions.
Theorem 3. Theorem 2 still holds if we use any correct ap-
proximate progression algorithm, replacing each Ōa and P̄a

with its further approximated counterpart Õa and P̃a.

Offline Search Algorithms
This section describes algorithms for the offline planning
setting, in which the objective is to quickly find a low-cost
sequence of actions leading all the way from s0 to t.

5A more accurate algorithm for pessimistic progression sorts
the clauses by increasing pessimistic cost, computes the minimal
prefix of this list whose disjunction covers all of the remaining
clauses, and then restricts the max over cost bounds to clauses in
this prefix. We did not implement this version, since it requires
many potentially expensive subsumption checks.
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Figure 2: (a) A standard lookahead tree for our example. Nodes are
labeled with states (written sxy(h/v)) and costs-so-far, edges are la-
beled with actions and associated costs, and leaves have a heuristic
estimate of the remaining distance-to-goal. (b) An abstract looka-
head tree (ALT) for our example. Nodes are labeled with optimistic
and pessimistic simple valuations and edges are labeled with (pos-
sibly high-level) actions and associated optimistic and pessimistic
costs.

Because we have models for our HLAs, our planning al-
gorithms will resemble existing algorithms that search over
primitive action sequences. Such algorithms typically oper-
ate by building a lookahead tree (see Figure 2(a)). The initial
tree consists of a single node labeled with the initial state and
cost 0, and computations consist of leaf node expansions:
for each primitive action a, we add an outgoing edge labeled
with that action and its cost g(s, a), whose child is labeled
with the state s′ = T (s, a) and total cost to s′. We also in-
clude at leaf nodes a heuristic estimate h(s′) of the remain-
ing cost to the goal. Paths from the root to a leaf are potential
plans; for each such plan a, we estimate the total cost of its
best continuation by f(s0,a) = g(s0,a) + h(T (s0,a)), the
sum of its cost and heuristic value. If the heuristic h never
overestimates, we call it admissible, and this f -cost will also
never overestimate. If h also obeys the triangle inequality
h(s) ≤ g(s, a) + h(T (s, a)), we call it consistent, and ex-
panding a node will always produce extensions with greater
or equal f -cost. These properties are required for A* and its
graph version (respectively) to efficiently find optimal plans.

In hierarchical planning we will consider algorithms that
build abstract lookahead trees (ALTs). In an ALT, edges
are labeled with (possibly high-level) actions and nodes are
labeled with optimistic and pessimistic valuations for cor-
responding partial plans. For example, in the ALT in Fig-
ure 2(b), by doing (Nav(0, 0), F, Go(0, 1)), state s01v is def-
initely reachable with cost in [5, 7], s01h may be reachable
with cost at least 5, and no other states are possibly reach-
able. Since our planning algorithms will try to find low-
cost solutions, we will be most concerned with finding opti-
mistic (and pessimistic) bounds on the cost of the best prim-
itive refinement of each high-level plan that reaches t. These
bounds can be extracted directly from the final ALT node of
each plan; for instance, the optimistic and pessimistic costs
to t of plan (Nav(0, 0), F, Go(0, 1), Z) are [5, 7].

We first present our optimal planning algorithm, AHA*,



simultaneously introducing some of the issues that arise in
our hierarchical planning framework. Then, we take a de-
tour to describe our ALT data structures and how they ad-
dress some of these issues in novel ways. Finally, we briefly
describe an alternative “satisficing” algorithm, AHSS.

Angelic Hierarchical A*
Our first offline algorithm is Angelic Hierarchical A*
(AHA*), a hierarchically optimal planning algorithm that
takes advantage of the semantic guarantees provided by op-
timistic and pessimistic descriptions. AHA* (see Algo-
rithm 1) is essentially A* in refinement space, where the ini-
tial node is the plan (Act), possible “actions” are refinements
of a plan at some HLA, and the goal set consists of the prim-
itive plans that reach t from s0. The algorithm repeatedly
expands a node with smallest optimistic cost bound, until a
goal node is chosen for expansion, which is returned as an
optimal solution.

More concretely, at each step AHA* selects a high-level
plan a with minimal optimistic cost to t (e.g., the bottom
plan in Figure 2(b)). Then it refines a, selecting some HLA a
and adding to the ALT all plans obtained from a by replacing
a with one of its immediate refinements.

While AHA* might seem like an obvious application of
A* to the hierarchical setting, we believe that it is an impor-
tant contribution for several reasons. First, its effectiveness
hinges on our ability to generate nontrivial cost bounds for
high-level sequences, which did not exist previously. Sec-
ond, it derives additional power from our ALT data struc-
tures, which provide caching, pruning, and other novel im-
provements specific to the hierarchical setting.

The only free parameter in AHA* is the choice of which
HLA to refine in a given plan; our implementation chooses
an HLA with maximal gap between its optimistic and pes-
simistic costs (defined below), breaking ties towards higher-
level actions.
Theorem 4. AHA* is hierarchically optimal.

AHA* always returns hierarchically optimal plans be-
cause optimistic costs are admissible, and always terminates
as long as only finitely many plans have optimistic costs ≤
the optimal cost. This holds automatically if the problem is
solvable, finite, and and has no nonpositive-optimistic-cost
cycles.

In a generalization of the ordinary notion of consistency,
we will sometimes desire consistent HLA descriptions, un-
der which we never lose information by refining.6 As in
the flat case, when descriptions are consistent, the optimistic
cost to t (i.e., f -cost) of a plan will never decrease with
further refinement. Similarly, its best pessimistic cost will
never increase. When consistency holds, as soon as AHA*
finds an optimal high-level plan with equal optimistic and

6Specifically, a set of optimistic descriptions (plus approximate
progression algorithm, if applicable) is consistent iff, when we re-
fine any high-level plan, its optimistic valuation dominates the op-
timistic valuations of its refinements. A set of pessimistic descrip-
tions (plus progression algorithm) is consistent iff the state-wise
minimum of a set of refinements’ pessimistic valuations always
dominates the pessimistic valuation of the parent plan.

Algorithm 1 : Angelic Hierarchical A*
function FINDOPTIMALPLAN(s0, t)

root← MAKEINITIALALT(s0, {(Act)})
while ∃ an unrefined plan do

a← plan with min opt. cost to t (tiebreak by pess. cost)
if a is primitive then return a
REFINEPLANEDGE(root,a, index of any HLA in a)

return failure

pessimistic costs, it will find an optimal primitive refinement
very efficiently. Consistency ensures that after each sub-
sequent refinement, at least one of the resulting plans will
also be optimal with equal optimistic and pessimistic costs;
moreover, all but the first such plan will be skipped by the
pruning described in the next section. Further refinement of
this first plan will continue until an optimal primitive refine-
ment is found without backtracking.

Abstract Lookahead Trees
Our ALT data structures support our search algorithms by
efficiently managing a set of candidate high-level plans and
associated valuations. The issues involved differ from the
primitive setting because nodes store valuations rather than
single states and exact costs, and because (unlike node ex-
pansion) plan refinement is “top-down” and may not corre-
spond to simple extensions of existing plans.

Algorithm 2 shows pseudocode for some basic ALT op-
erations. Our search algorithms work by first creating an
ALT containing some initial set of plans using MAKEINI-
TIALALT, and then repeatedly refining candidate plans us-
ing REFINEPLANEDGE, which only considers refinements
whose preconditions are met by at least one state in the cor-
responding optimistic reachable set. Both operations inter-
nally call ADDPLAN, which adds a plan to the ALT by start-
ing at the existing node corresponding to the longest prefix
shared with any existing plan, and creating nodes for the
remaining plan suffix by progressing its valuations through
the corresponding action descriptions. In the process, par-
tial plans that are provably dominated and plans that cannot
possibly reach the goal are recognized and skipped over.
Theorem 5. If a node n with optimistic valuation O(n) is
created while adding plan a, and another node n′ exists with
pessimistic valuation P (n′) s.t. P (n′) � O(n) and the re-
maining plan suffix of a is a legal hierarchical continuation
from n′, then a is safely prunable.

(The continuation condition is needed since the hierarchy
might allow better continuations from node n than n′.)

For example, the plan (L, R, Nav(0, 1), Z) in Figure 2(b)
is prunable since its optimistic valuation is dominated by the
pessimistic valuation above it, and the empty continuation is
allowed from that node. Since detecting all pruned nodes
can be very expensive, our implementation only considers
pruning for nodes with singleton reachable sets.

One might wonder why REFINEPLANEDGE refines a sin-
gle plan at a given HLA edge, rather than simultaneously
refining all plans that pass through it. The reason is that af-
ter each refinement of the HLA, it would have to continue
progression for each such plan’s suffix. This could be need-



Algorithm 2 : Abstract lookahead tree (ALT) operations
function ADDPLAN(n, (a1, ..., ak))

for i from 1 to k do
if node n[ai] does not exist then

create n[ai] from n and the descriptions of ai

if n[ai] is prunable via Theorem 5 then return
n← n[ai]

if O(n)(t) <∞ then mark n as a valid refinable plan

function MAKEINITIALALT(s0, plans)
root← a new node with O(root) = P (root) = v0

for each plan ∈ plans do ADDPLAN(root, plan)
return root

function REFINEPLANEDGE(root, (a1, ..., ak), i)
mark node root[a1]...[ak] as refined
for (b1...bj)∈I(ai) w/ prec. met by O(root[a1]...[ai−1]) do

ADDPLAN(root, (a1, ..., ai−1, b1, ..., bj , ai+1, ..., ak))

(o, p)← (min, max) of the (opt., pess.) costs of ai’s refs
ai’s opt. cost ←max(current value, o) /* upward */
ai’s pess. cost←min(current value, p) /* propagation */

lessly expensive, especially if some such plans are already
thought to be bad.

In any case, when valuations are simple, we can use
a novel improvement called upward propagation (imple-
mented in REFINEPLANEDGE) to propagate new informa-
tion about the cost of a refined HLA edge to other plans that
pass through it, without having to explicitly refine them or
do any additional progression. This improvement hinges on
the fact that with simple valuations, the optimistic and pes-
simistic costs for a plan can be broken down into optimistic
and pessimistic costs for each action in that plan (see Fig-
ure 2(b)).
Theorem 6. The min optimistic cost of any refinement of
HLA a is a valid optimistic cost for a’s current optimistic
reachable set, and when pessimistic descriptions are consis-
tent, the max such pessimistic cost is similarly valid.

Thus, upon refining an HLA edge, we can tighten its cost
interval to reflect the cost intervals of its immediate refine-
ments, without modifying its reachable sets. This results in
better cost bounds for all other plans that pass through this
HLA edge, without needing to do any additional progression
computations for (the suffixes of) such plans. 7

Angelic Hierarchical Satisficing Search
This section presents an alternative algorithm, Angelic Hier-
archical Satisficing Search (AHSS), which attempts to find
a plan that reaches the goal with at most some pre-specified
cost α. AHSS can be much more efficient than AHA*, since
it can commit to a plan without first proving its optimality.

At each step, AHSS (see Algorithm 3) begins by checking
if any primitive plans succeed with cost ≤ α. If so, the best

7Note that changing the costs renders the valuations stored at
child nodes of the refined edge out-of-date. The plan selection step
of AHA* can nevertheless be done correctly, by storing “Q-values”
of each edge in the tree, and backing up Q-values up to the root
whenever upward propagation is done.

Algorithm 3 : Angelic Hierarchical Satisficing Search
function FINDSATISFICINGPLAN(s0, t, α)

root← MAKEINITIALALT(s0, {Act})
while ∃ an unrefined plan with optimistic cost ≤ α to t do

if any plan has pessimistic cost ≤ α to t then
if any such plans are primitive then return a best one
else delete all plans other than one with min pess. cost

a← a plan with optimistic cost≤ α to t with max priority
REFINEPLANEDGE(root,a, index of any HLA in a)

return failure

such plan is returned. Next, if any (high-level) plans succeed
with pessimistic cost ≤ α, the best such plan is committed
to by discarding other potential plans. Finally, a plan with
maximum priority is refined at one of its HLAs. Priorities
can be assigned arbitrarily; our implementation uses the neg-
ative average of optimistic and pessimistic costs, to encour-
age a more depth-first search and favor plans with smaller
pessimistic cost.
Theorem 7. AHSS is sound and complete.

If any hierarchical plans reach the goal with cost ≤ α,
AHSS will return one of them; otherwise, it will return fail-
ure. (Termination is guaranteed as long as only a finite num-
ber of high-level plans have optimistic costs ≤ α.) Like
AHA*, when HLA descriptions are consistent, once AHSS
finds a satisficing high-level plan it will find a satisficing
primitive refinement in a backtrack-free search.

Online Search Algorithms
In the online setting, an agent must begin executing actions
without first searching all the way to the goal. The agent be-
gins in the initial state s0, performs a fixed amount of com-
putation, then selects an action a.8 It then does this action in
the environment, moving to state T (s0, a) and paying cost
g(s0, a). This continues until the goal state t is reached.
Performance is measured by the total cost of the actions ex-
ecuted. We assume that the state space is safely explorable,
so that the goal is reachable from any state (with finite cost),
and also assume positive action costs and consistent heuris-
tics/descriptions from this point forward.

This section presents our next contribution, one of the first
hierarchical lookahead algorithms. Since it will build upon
a variant of Korf’s (1990) Learning Real-Time A* (LRTA*)
algorithm, we begin by briefly reviewing LRTA*.9

At each environment step, LRTA* uses its computation
time to build a lookahead tree consisting of all plans a whose
cost g(s0,a) just exceeds a given threshold. Then, it selects
one such plan amin with minimal f -cost and does its first
action in the world. Intuitively, looking farther ahead should
increase the likelihood that amin is actually good, by de-
creasing reliance on the (error-prone) heuristic. The choice
of candidate plans is designed to compensate for the fact that
the heuristic h is typically biased (i.e., admissible) whereas
g is exact, and thus the f -cost of a plan with higher h and

8More interesting ways to balance real-world and computa-
tional cost are possible, but this suffices for now.

9To be precise, Korf focused on the case of unit action costs;
we present the natural generalization to positive real-valued costs.



lower g may not be directly comparable to one with higher
g and lower h.

This core algorithm is then improved by a learning rule.
Whenever a partial plan a leading to a previously-visited
state s is encountered during search, further extensions of a
are not considered; instead, the remaining cost-to-goal from
s is taken to be the value computed by the most recent search
at s. This augmented algorithm has several nice properties:
Theorem 8. (Korf 1990) If g-costs are positive, h-costs are
finite, and the state space is finite and safely explorable, then
LRTA* will eventually reach the goal.
Theorem 9. (Korf 1990) If, in addition, h is admissible and
ties are broken randomly, then given enough runs, LRTA*
will eventually learn the true cost of every state on an opti-
mal path, and act optimally thereafter.

However, as described thus far, LRTA* has several draw-
backs. First, it wastes time considering obviously bad plans.
(Korf prevented this with “alpha pruning”). Second, a cost
threshold must be set in advance, and picking this thresh-
old so that the algorithm uses a desired amount of compu-
tation time may be difficult. Both drawbacks can solved us-
ing the following adaptive LRTA* algorithm, a relative of
Korf’s “time-limited A*”: (1) Start with the empty plan. (2)
At each step, select an unexpanded plan with lowest f -cost.
If this plan has greater g-cost than any previously expanded
plan, “lock it in” as the current return value. Expand this
plan. (3) When computation time runs out, return the cur-
rent “locked-in” plan.
Theorem 10. At any point during the operation of this al-
gorithm, let a be the current locked-in plan, c2 be its cor-
responding “record-setting” g-cost, and c1 be the previous
record g-cost (c1 < c2). Given any threshold in [c1, c2),
LRTA* would choose a for execution (up to tiebreaking).

Thus, this modified algorithm can be used as an efficient,
anytime version of LRTA*. Since its behaviour reduces to
the original version for a particular (adaptive) choice of cost
thresholds, all of the properties of LRTA* hold for it as well.

Angelic Hierarchical Learning Real-Time A*
This section describes Angelic Hierarchical Learning Real-
Time A* (AHLRTA*, see Algorithm 4), which bears
(roughly) the same relation to adaptive LRTA* as AHA*
does to A*. Because a single HLA can correspond to
many primitive actions, for a given amount of computation
time we hope that AHLRTA* will have a greater effective
lookahead depth than LRTA*, and thus make better action
choices. However, a number of issues arise in the general-
ization to the hierarchical setting that must be addressed to
make this basic idea work in both theory and practice.

First, while AHLRTA* searches over the space of high-
level plans, when computation time runs out it must choose a
primitive action to execute. Thus, if the algorithm initializes
its ALT with the single plan (Act), it will have to consider its
refinements carefully to ensure that in its final ALT, at least
one of the (hopefully better) high-level plans begins with an
executable primitive. To avoid this issue (and to ensure con-
vergence of costs, as described below), we instead choose
to initialize the ALT with the set of all plans consisting of

Algorithm 4 : Angelic Hierarchical Learning Real-Time A*
function HIERARCHICALLOOKAHEADAGENT(s0, t)

memory ← an empty hash table
while s0 6= t do

root← MAKEINITIALALT(s0, {(a, Act) | a ∈ L})
(g, a, f)← (−1, nil, 0)
while ∃ unrefined plans from root ∧ time remains do

a← a plan w/ min f -cost
if the g-cost of a > g then

(g,a,f)← (g-cost of a, a1, f -cost of a)

REFINEPLANEDGE(root,a, some index, memory)

do a in the world
memory[s0]← f
s0 ← T (s0, a)

a primitive action followed by Act.10 With this set of plans,
the choice of which HLA to refine in a plan is open; our
implementation uses the policy described above for AHA*.

Second, as we saw earlier, an analogue of f -cost can be
extracted from our optimistic valuations. However, there is
no obvious breakdown of f into g and h components, since a
high-level plan can consist of actions at various levels, each
of whose descriptions may make different types and degrees
of characteristic errors. For now, we assume that a set of
higher-level HLAs (e.g., Act and Go) has been identified, let
h be the sum of the optimistic costs of these actions, and let
g = f−h be the cost of the primitives and remaining HLAs.

Finally, whereas the outcome of a primitive plan is a par-
ticular concrete state whose stored cost can be simply looked
up in a hash table, the optimistic valuations of a high-level
plan instead provide a sequence of reachable sets of states.
In general, for each such set we could look up and com-
bine the stored costs of its elements; instead, however, for
efficiency our implementation only checks for stored costs
of singleton optimistic sets (e.g., those corresponding to a
primitive prefix of a given high-level plan). If the state in
a constructed singleton set has a stored cost, progression is
stopped and this value is used as the cost of the remainder of
the plan. This functionality is added by modifying REFINE-
PLANEDGE and ADDPLAN accordingly (not shown).

Given all of these choices, we have the following:
Theorem 11. AHLRTA* reduces to adaptive LRTA*, given
a “flat” hierarchy in which Act refines to any primitive ac-
tion followed by Act (or the empty sequence).

(In fact, this is how we have implemented LRTA* for our
experiments.) Moreover, the desirable properties of LRTA*
also hold for AHLRTA* in general hierarchies. This follows
because AHLRTA* behaves identically to LRTA* in neigh-
borhoods in which every state has been visited at least once.
Theorem 12. If primitive g-costs are positive, f -costs are
finite, and the state space is finite and safely explorable, then
AHLRTA* will eventually reach the goal.
Theorem 13. If, in addition, f -costs are admissible, ties

10Note that with this choice, the plans considered by the agent
may not be valid hierarchical plans (i.e., refinements of Act). How-
ever, since the agent can change its mind on each world step, the
actual sequence of actions executed in the world is not in general
consistent with the hierarchy anyway.



are broken randomly, and the hierarchy is optimality-
preserving, then over repeated trials AHLRTA* will even-
tually learn the true cost of every state on an optimal path
and act optimally thereafter.

If f-costs are inadmissible or the hierarchy is not
optimality-preserving, the theorem still holds if s0 is sam-
pled from a distribution with support on S in each trial.

Our implementation of AHLRTA* includes two minor
changes from the version described above, which we have
found to increase its effectiveness. First, it sometimes
throws away some of its allowed computation time, so that
the number of refinements taken per allowed initial primitive
action is constant; this tends to improve the interaction of the
lookahead strategy with the learning rule. Second, when de-
ciding when to “lock in” a plan it requires additionally that
the plan is more refined than the previous locked in plan;
this helps counteract the implicit bias towards higher-level
plans caused by aggregation of costs from primitives and
various HLAs into g-cost. Since both changes effectively
only change the stopping time of the algorithm, its desirable
properties are preserved.

Experiments
This section describes results for the above algorithms on
two domains: our “nav-switch” running example, and the
warehouse world (MRW ’07).11

The warehouse world is an elaboration of the well-known
blocks world, with discrete spatial constraints added. In this
domain, a forklift-like gripper hanging from the ceiling can
move around and manipulate blocks stacked on a table. Both
gripper and blocks occupy single squares in a 2-d grid of al-
lowed positions. The gripper can move to free squares in the
four cardinal directions, turn (to face the other way) when
in the top row, and pick up and put down blocks from either
side. Each primitive action has unit cost. Because of the
limited maneuvering space, warehouse world problems can
be rather difficult. For instance, Figure 3 shows a problem
that cannot be solved in fewer than 50 primitive steps. The
figure also shows our HLAs for the domain, which we use
unchanged from (MRW ’07) along with the NCSTRIPS de-
scriptions therein (to which we add simple cost bounds). We
consider six instances of varying difficulty.

For the nav-switch domain, we consider square grids of
varying size with 3 randomly placed switches, where the
goal is always to navigate from one corner to the other. We
use the hierarchy and descriptions described above.

We first present results for our offline algorithms on these
domains (see Table 1). On the warehouse world instances,
nonhierarchical (flat) A* does reasonably well on small
problems, but quickly becomes impractical as the optimal
plan length increases. AHA* is able to plan optimally in
larger problems, but for the largest instances, it too runs out
of time. The reason is that it must not only find the opti-
mal plan, but also prove that all other high-level plans have
higher cost. In contrast, AHSS with a threshold of∞ is able
to solve all the problems fairly quickly.

11Our code is available at
http://www.cs.berkeley.edu/∼jawolfe/angelic/
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Move(b, c) Stack block b on c by NavT to
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side of c, put down.

NavT(x, y) Go to (x, y), possibly turning
Nav(x, y) Go directly to (x, y)

Figure 3: Left: A 4x4 warehouse world problem with goal
ON(c, t2) ∧ ON(a, c). Right: HLAs for warehouse world domain.

nav-switch
sz A* AHA* AHSS
5 0 0 0
10 22 1 1
20 176 3 3
40 – 40 40

warehouse world
# A* AHA* AHSS HFS
1 1 0 0 1
2 9 4 2 12
3 – 63 9 135
4 – 526 27 –
5 – – 60 –
6 – – 48 –

Table 1: Run-times of offline algorithms, rounded to the nearest
second, on some nav-switch and warehouse world problem in-
stances. The algorithms are (flat) graph A*, AHA*, AHSS with
threshold α=∞, and HFS from (MRW ’07). Algorithms were ter-
minated if they failed to return within 104 seconds (shown as “–”).

We also included, for comparison, results for the Hierar-
chical Forward Search (HFS) algorithm (MRW ’07), which
does not consider plan cost. When passed a threshold of
∞, AHSS has the same objective as HFS: to find any plan
from s0 to t with as little computation as possible. However,
AHSS has several important advantages over HFS. First, its
priority function serves as a heuristic, and usually results in
higher-quality plans being found. Second, AHSS is actually
much simpler. In particular, whereas HFS required itera-
tive deepening, cycle checking, and a special plan decom-
position mechanism to ensure completeness and efficiency,
the use of cost information allows AHSS to naturally reap
the same benefits without needing any such explicit mech-
anisms. Finally, the abstract lookahead tree data structure
provides caching and decreases the number of NCSTRIPS
progressions required. Due to these improvements, HFS is
slightly slower than the optimal planner AHA*, and a few
orders of magnitude slower than AHSS.

On the nav-switch instances, results are qualitatively simi-
lar. Again, flat A* quickly becomes impractical as the prob-
lem size grows. However, in this domain, AHA* actually
performs very well, almost matching the performance of
AHSS. The reason is that in this domain, the descriptions
for Nav are exact, and thus AHA* can very quickly find a
provably optimal high-level plan and refine it down to the
primitive level without backtracking, as described earlier.

The obvious next step would be to compare AHA* with
other optimal hierarchical planners, such as SHOP2 on its
“optimal” setting. However, this is far from straightforward,
for several reasons. First, useful hierarchies are often not
optimality-preserving, and it is not at all obvious how we
should compare different “optimal” planners that use differ-
ent standards for optimality. Second, as described in the re-
lated work section below, the type and amount of problem-
specific information provided to our algorithms can be very
different than for HTN planners such as SHOP2. We have
yet to find a way to perform meaningful experimental com-
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Figure 4: Total cost-to-goal for online algorithms as a function of
the number of allowed refinements per environment step, averaged
over three instances each of the nav-switch domain (left) and ware-
house world (right). (Warehouse world costs shown in log-scale.)

parisons under these circumstances.
For the online setting, we compared (flat) LRTA* and

AHLRTA*. The performance of an online algorithm on a
given instance depends on the number of allowed refine-
ments per step. Our graphs therefore plot total cost against
refinements per step for LRTA* and AHLRTA*. AHLRTA*
took about five times longer per refinement than LRTA* on
average, though this factor could probably be decreased by
optimizing the DNF operations. 12

The left graph of Figure 4 is averaged across three in-
stances of the nav-switch world. This domain is rel-
atively easy as an online lookahead problem, because
the Manhattan-distance heuristic for Act always points in
roughly the right direction. In all cases, the hierarchical
agent behaved optimally given about 50 refinements per
step. With this number of refinements, the flat agent usu-
ally followed a reasonable, though suboptimal plan. But it
did not display optimal behaviour, even when the number of
refinements per step was increased to 1000.

The right graph in Figure 4 shows results averaged across
three instances of the warehouse world. This domain is more
challenging for online lookahead, as the combinatorial struc-
ture of the problem makes the Act heuristic less reliable.
AHLRTA* started to behave optimally given a few hundred
refinements per step. In contrast, flat lookahead was very
suboptimal (note that the y-axis is on a log scale), even given
five thousand refinements.

Here are some qualitative phenomena we observed on the
experiments (data will be provided in full paper). First, as
the number of refinements increased, AHLRTA* reached a
point where it found a provably optimal primitive plan on
each environment step. But it also had reasonable behav-
ior when the number of refinements did not suffice to find
a provably optimal plan (the left portion of the righthand
graph), in that the “intended” plan at each step typically
consisted of a few primitive actions followed by increas-
ingly high-level actions, and this intended plan was usually
reasonable at the high level. Second, when very few refine-
ments (< 50) were allowed per step, AHLRTA* actually did
worse than LRTA* on (a single instance of) the nav-switch
world. While we do not completely understand the cause,
what seems to be happening is that in the regime of very lit-

12It cannot be completely avoided because refinements for the
hierarchical algorithms require multiple progressions.

tle deliberation time per step, lookahead pathologies and the
LRTA* learning rule interact in complex ways, often caus-
ing the agent to spend long periods of time “filling out” local
minima of the heuristic function in the state space. 13 This
phenomenon is further complicated in the hierarchical case
by the fact that the cost bounds for different HLAs tend to
be systematically biased in different ways (for example, the
optimistic bound for Nav is nearly exact, while the bound
for Move tends to underestimate by a factor of two). Im-
proved online lookahead algorithms that degrade gracefully
in such situations, even given very little deliberation time,
are an interesting topic for future work.

Related Work
We briefly describe work related to our specific contribu-
tions, deferring to (MRW ’07) for discussion of relationships
between this general line of work and previous approaches.

Most previous work in hierarchical planning (Tate 1977;
Yang 1990; Russell & Norvig 2003) has viewed HLA de-
scriptions (when used at all) as constraints on the planning
process (e.g., “only consider refinements that achieve p”),
rather than as making true assertions about the effects of
HLAs. Such HTN planning systems, e.g., SHOP2 (Nau et
al. 2003), have achieved impressive results in previous plan-
ning competitions and real-world domains—despite the fact
that they cannot assure the correctness or bound the cost of
abstract plans. Instead, they encode a good deal of domain-
specific advice on which refinements to try in which cir-
cumstances, often expressed as arbitrary program code. For
fairly simple domains described in tens of lines of PDDL,
SHOP2 hierarchies can include hundreds or thousands of
lines of Lisp code. In contrast, our algorithms only require a
(typically simple) hierarchical structure, along with descrip-
tions that logically follow from (and are potentially automat-
ically derivable from) this structure.

The closest work to ours is by Doan and Haddawy (1995).
Their DRIPS planning system uses action abstraction along
with an analogue of our optimistic descriptions to find op-
timal plans in the probabilistic setting. However, without
pessimistic descriptions, they can only prove that a given
high-level plan satisfies some property when the property
holds for all of its refinements, which severely limits the
amount of pruning possible compared to our approach. Hel-
wig and Haddawy (1996) extended DRIPS to the online set-
ting. Their algorithm did not cache backed-up values, and
hence cannot guarantee eventual goal achievement, but it
was probably the first principled online hierarchical looka-
head agent.

Several other works have pursued similar goals to ours,
but using state abstraction rather than HLAs. Holte et al.
(1996) developed Hierarchical A*, which uses an automat-
ically constructed hierarchy of state abstractions in which
the results of optimal search at each level define an admis-
sible heuristic for search at the next-lower level. Similarly,
Bulitko et al. (2007) proposed the PR LRTS algorithm, a

13This is also why the LRTA* curve in the warehouse world is
nonmonotonic.



real-time algorithm in which a plan discovered at each level
constrains the planning process at the next-lower level.

Finally, other works have considered adding pessimistic
bounds to the A* (Berliner 1979) and LRTA* (Ishida &
Shimbo 1996) algorithms, to help guide search and explo-
ration as well as monitor convergence. These techniques
may also be useful for our corresponding hierarchical algo-
rithms.

Discussion
We have presented several new algorithms for hierarchi-
cal planning with promising theoretical and empirical prop-
erties. There are many interesting directions for future
work, such as developing better representations for de-
scriptions and valuations, automatically synthesizing de-
scriptions from the hierarchy, and generalizing domain-
independent techniques for automatic derivation of planning
heuristics to the hierarchical setting. One might also con-
sider extensions to partially ordered, probabilistic, and par-
tially observable settings, and better online algorithms that,
e.g., maintain more state across environment steps.
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